Update modeling_gemma.py
Browse filesrebasing on latest transformers
- modeling_gemma.py +387 -573
modeling_gemma.py
CHANGED
|
@@ -1,3 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# coding=utf-8
|
| 2 |
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
| 3 |
#
|
|
@@ -13,74 +19,111 @@
|
|
| 13 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
# See the License for the specific language governing permissions and
|
| 15 |
# limitations under the License.
|
| 16 |
-
""" PyTorch Gemma model."""
|
| 17 |
-
|
| 18 |
import math
|
| 19 |
-
import warnings
|
| 20 |
from typing import List, Optional, Tuple, Union
|
| 21 |
|
| 22 |
import torch
|
| 23 |
-
import torch.nn.functional as F
|
| 24 |
import torch.utils.checkpoint
|
| 25 |
from torch import nn
|
| 26 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 27 |
|
| 28 |
-
from
|
| 29 |
-
from
|
| 30 |
-
from
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
)
|
| 34 |
-
from transformers.modeling_outputs import (
|
| 35 |
BaseModelOutputWithPast,
|
| 36 |
CausalLMOutputWithPast,
|
| 37 |
SequenceClassifierOutputWithPast,
|
|
|
|
| 38 |
)
|
| 39 |
-
from
|
| 40 |
-
from
|
| 41 |
-
from
|
| 42 |
add_start_docstrings,
|
| 43 |
add_start_docstrings_to_model_forward,
|
| 44 |
-
is_flash_attn_2_available,
|
| 45 |
is_flash_attn_greater_or_equal_2_10,
|
| 46 |
logging,
|
| 47 |
replace_return_docstrings,
|
| 48 |
)
|
| 49 |
-
from transformers.utils.import_utils import is_torch_fx_available
|
| 50 |
from .configuration_gemma import GemmaConfig
|
| 51 |
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
|
|
|
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
def
|
| 73 |
-
|
| 74 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 75 |
-
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 76 |
-
cu_seqlens = F.pad(
|
| 77 |
-
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
| 78 |
-
)
|
| 79 |
-
return (
|
| 80 |
-
indices,
|
| 81 |
-
cu_seqlens,
|
| 82 |
-
max_seqlen_in_batch,
|
| 83 |
-
)
|
| 84 |
|
| 85 |
|
| 86 |
ALL_LAYERNORM_LAYERS.append(GemmaRMSNorm)
|
|
@@ -93,45 +136,80 @@ class GemmaRotaryEmbedding(nn.Module):
|
|
| 93 |
self.dim = dim
|
| 94 |
self.max_position_embeddings = max_position_embeddings
|
| 95 |
self.base = base
|
| 96 |
-
|
| 97 |
-
self.inv_freq =
|
| 98 |
|
| 99 |
@torch.no_grad()
|
| 100 |
def forward(self, x, position_ids, seq_len=None):
|
| 101 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
self.base
|
| 105 |
-
** (
|
| 106 |
-
torch.arange(
|
| 107 |
-
0, self.dim, 2, dtype=torch.int64, device=x.device
|
| 108 |
-
).float()
|
| 109 |
-
/ self.dim
|
| 110 |
-
)
|
| 111 |
-
)
|
| 112 |
-
inv_freq_expanded = (
|
| 113 |
-
self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 114 |
-
)
|
| 115 |
position_ids_expanded = position_ids[:, None, :].float()
|
| 116 |
# Force float32 since bfloat16 loses precision on long contexts
|
| 117 |
# See https://github.com/huggingface/transformers/pull/29285
|
| 118 |
device_type = x.device.type
|
| 119 |
-
device_type = (
|
| 120 |
-
device_type
|
| 121 |
-
if isinstance(device_type, str) and device_type != "mps"
|
| 122 |
-
else "cpu"
|
| 123 |
-
)
|
| 124 |
with torch.autocast(device_type=device_type, enabled=False):
|
| 125 |
-
freqs = (
|
| 126 |
-
inv_freq_expanded.float() @ position_ids_expanded.float()
|
| 127 |
-
).transpose(1, 2)
|
| 128 |
emb = torch.cat((freqs, freqs), dim=-1)
|
| 129 |
cos = emb.cos()
|
| 130 |
sin = emb.sin()
|
| 131 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 132 |
|
| 133 |
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
def rotate_half(x):
|
| 136 |
"""Rotates half the hidden dims of the input."""
|
| 137 |
x1 = x[..., : x.shape[-1] // 2]
|
|
@@ -139,7 +217,6 @@ def rotate_half(x):
|
|
| 139 |
return torch.cat((-x2, x1), dim=-1)
|
| 140 |
|
| 141 |
|
| 142 |
-
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
| 143 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 144 |
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 145 |
|
|
@@ -167,33 +244,6 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
| 167 |
return q_embed, k_embed
|
| 168 |
|
| 169 |
|
| 170 |
-
class GemmaMLP(nn.Module):
|
| 171 |
-
def __init__(self, config):
|
| 172 |
-
super().__init__()
|
| 173 |
-
self.config = config
|
| 174 |
-
self.hidden_size = config.hidden_size
|
| 175 |
-
self.intermediate_size = config.intermediate_size
|
| 176 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 177 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 178 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 179 |
-
if config.hidden_activation is None:
|
| 180 |
-
logger.warning_once(
|
| 181 |
-
"Gemma's activation function should be approximate GeLU and not exact GeLU.\n"
|
| 182 |
-
"Changing the activation function to `gelu_pytorch_tanh`."
|
| 183 |
-
f"if you want to use the legacy `{config.hidden_act}`, "
|
| 184 |
-
f"edit the `model.config` to set `hidden_activation={config.hidden_act}` "
|
| 185 |
-
" instead of `hidden_act`. See https://github.com/huggingface/transformers/pull/29402 for more details."
|
| 186 |
-
)
|
| 187 |
-
hidden_activation = "gelu_pytorch_tanh"
|
| 188 |
-
else:
|
| 189 |
-
hidden_activation = config.hidden_activation
|
| 190 |
-
self.act_fn = ACT2FN[hidden_activation]
|
| 191 |
-
|
| 192 |
-
def forward(self, x):
|
| 193 |
-
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 197 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 198 |
"""
|
| 199 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
@@ -202,16 +252,13 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
| 202 |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 203 |
if n_rep == 1:
|
| 204 |
return hidden_states
|
| 205 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(
|
| 206 |
-
batch, num_key_value_heads, n_rep, slen, head_dim
|
| 207 |
-
)
|
| 208 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 209 |
|
| 210 |
|
| 211 |
class GemmaAttention(nn.Module):
|
| 212 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 213 |
|
| 214 |
-
# Ignore copy
|
| 215 |
def __init__(self, config: GemmaConfig, layer_idx: Optional[int] = None):
|
| 216 |
super().__init__()
|
| 217 |
self.config = config
|
|
@@ -232,6 +279,7 @@ class GemmaAttention(nn.Module):
|
|
| 232 |
self.max_position_embeddings = config.max_position_embeddings
|
| 233 |
self.rope_theta = config.rope_theta
|
| 234 |
self.is_causal = True
|
|
|
|
| 235 |
|
| 236 |
if self.hidden_size % self.num_heads != 0:
|
| 237 |
raise ValueError(
|
|
@@ -239,22 +287,10 @@ class GemmaAttention(nn.Module):
|
|
| 239 |
f" and `num_heads`: {self.num_heads})."
|
| 240 |
)
|
| 241 |
|
| 242 |
-
self.q_proj = nn.Linear(
|
| 243 |
-
|
| 244 |
-
)
|
| 245 |
-
self.
|
| 246 |
-
self.hidden_size,
|
| 247 |
-
self.num_key_value_heads * self.head_dim,
|
| 248 |
-
bias=config.attention_bias,
|
| 249 |
-
)
|
| 250 |
-
self.v_proj = nn.Linear(
|
| 251 |
-
self.hidden_size,
|
| 252 |
-
self.num_key_value_heads * self.head_dim,
|
| 253 |
-
bias=config.attention_bias,
|
| 254 |
-
)
|
| 255 |
-
self.o_proj = nn.Linear(
|
| 256 |
-
self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias
|
| 257 |
-
)
|
| 258 |
self.rotary_emb = GemmaRotaryEmbedding(
|
| 259 |
self.head_dim,
|
| 260 |
max_position_embeddings=self.max_position_embeddings,
|
|
@@ -270,7 +306,6 @@ class GemmaAttention(nn.Module):
|
|
| 270 |
output_attentions: bool = False,
|
| 271 |
use_cache: bool = False,
|
| 272 |
cache_position: Optional[torch.LongTensor] = None,
|
| 273 |
-
**kwargs,
|
| 274 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 275 |
bsz, q_len, _ = hidden_states.size()
|
| 276 |
|
|
@@ -278,47 +313,30 @@ class GemmaAttention(nn.Module):
|
|
| 278 |
key_states = self.k_proj(hidden_states)
|
| 279 |
value_states = self.v_proj(hidden_states)
|
| 280 |
|
| 281 |
-
query_states = query_states.view(
|
| 282 |
-
|
| 283 |
-
).transpose(1, 2)
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
value_states = value_states.view(
|
| 288 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 289 |
-
).transpose(1, 2)
|
| 290 |
-
|
| 291 |
-
past_key_value = getattr(self, "past_key_value", past_key_value)
|
| 292 |
-
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
| 293 |
-
query_states, key_states = apply_rotary_pos_emb(
|
| 294 |
-
query_states, key_states, cos, sin, None
|
| 295 |
-
)
|
| 296 |
|
| 297 |
if past_key_value is not None:
|
| 298 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 299 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 300 |
-
key_states, value_states = past_key_value.update(
|
| 301 |
-
key_states, value_states, self.layer_idx, cache_kwargs
|
| 302 |
-
)
|
| 303 |
|
| 304 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 305 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 306 |
|
| 307 |
-
attn_weights = torch.matmul(
|
| 308 |
-
query_states, key_states.transpose(2, 3)
|
| 309 |
-
) / math.sqrt(self.head_dim)
|
| 310 |
|
| 311 |
if attention_mask is not None: # no matter the length, we just slice it
|
| 312 |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 313 |
attn_weights = attn_weights + causal_mask
|
| 314 |
|
| 315 |
# upcast attention to fp32
|
| 316 |
-
attn_weights = nn.functional.softmax(
|
| 317 |
-
|
| 318 |
-
).to(query_states.dtype)
|
| 319 |
-
attn_weights = nn.functional.dropout(
|
| 320 |
-
attn_weights, p=self.attention_dropout, training=self.training
|
| 321 |
-
)
|
| 322 |
attn_output = torch.matmul(attn_weights, value_states)
|
| 323 |
|
| 324 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
@@ -338,7 +356,6 @@ class GemmaAttention(nn.Module):
|
|
| 338 |
return attn_output, attn_weights, past_key_value
|
| 339 |
|
| 340 |
|
| 341 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->Gemma
|
| 342 |
class GemmaFlashAttention2(GemmaAttention):
|
| 343 |
"""
|
| 344 |
Gemma flash attention module. This module inherits from `GemmaAttention` as the weights of the module stays
|
|
@@ -354,7 +371,6 @@ class GemmaFlashAttention2(GemmaAttention):
|
|
| 354 |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 355 |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 356 |
|
| 357 |
-
# Ignore copy
|
| 358 |
def forward(
|
| 359 |
self,
|
| 360 |
hidden_states: torch.Tensor,
|
|
@@ -364,8 +380,13 @@ class GemmaFlashAttention2(GemmaAttention):
|
|
| 364 |
output_attentions: bool = False,
|
| 365 |
use_cache: bool = False,
|
| 366 |
cache_position: Optional[torch.LongTensor] = None,
|
| 367 |
-
**kwargs,
|
| 368 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
output_attentions = False
|
| 370 |
|
| 371 |
bsz, q_len, _ = hidden_states.size()
|
|
@@ -377,29 +398,17 @@ class GemmaFlashAttention2(GemmaAttention):
|
|
| 377 |
# Flash attention requires the input to have the shape
|
| 378 |
# batch_size x seq_length x head_dim x hidden_dim
|
| 379 |
# therefore we just need to keep the original shape
|
| 380 |
-
query_states = query_states.view(
|
| 381 |
-
|
| 382 |
-
).transpose(1, 2)
|
| 383 |
-
key_states = key_states.view(
|
| 384 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 385 |
-
).transpose(1, 2)
|
| 386 |
-
value_states = value_states.view(
|
| 387 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 388 |
-
).transpose(1, 2)
|
| 389 |
-
|
| 390 |
-
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
| 391 |
-
query_states, key_states = apply_rotary_pos_emb(
|
| 392 |
-
query_states, key_states, cos, sin, None
|
| 393 |
-
)
|
| 394 |
|
| 395 |
-
|
|
|
|
| 396 |
|
| 397 |
if past_key_value is not None:
|
| 398 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 399 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 400 |
-
key_states, value_states = past_key_value.update(
|
| 401 |
-
key_states, value_states, self.layer_idx, cache_kwargs
|
| 402 |
-
)
|
| 403 |
|
| 404 |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 405 |
# to be able to avoid many of these transpose/reshape/view.
|
|
@@ -435,13 +444,17 @@ class GemmaFlashAttention2(GemmaAttention):
|
|
| 435 |
key_states = key_states.to(target_dtype)
|
| 436 |
value_states = value_states.to(target_dtype)
|
| 437 |
|
| 438 |
-
attn_output =
|
| 439 |
query_states,
|
| 440 |
key_states,
|
| 441 |
value_states,
|
| 442 |
attention_mask,
|
| 443 |
q_len,
|
|
|
|
| 444 |
dropout=dropout_rate,
|
|
|
|
|
|
|
|
|
|
| 445 |
)
|
| 446 |
|
| 447 |
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
|
@@ -452,133 +465,7 @@ class GemmaFlashAttention2(GemmaAttention):
|
|
| 452 |
|
| 453 |
return attn_output, attn_weights, past_key_value
|
| 454 |
|
| 455 |
-
def _flash_attention_forward(
|
| 456 |
-
self,
|
| 457 |
-
query_states,
|
| 458 |
-
key_states,
|
| 459 |
-
value_states,
|
| 460 |
-
attention_mask,
|
| 461 |
-
query_length,
|
| 462 |
-
dropout=0.0,
|
| 463 |
-
softmax_scale=None,
|
| 464 |
-
):
|
| 465 |
-
"""
|
| 466 |
-
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 467 |
-
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 468 |
-
|
| 469 |
-
Args:
|
| 470 |
-
query_states (`torch.Tensor`):
|
| 471 |
-
Input query states to be passed to Flash Attention API
|
| 472 |
-
key_states (`torch.Tensor`):
|
| 473 |
-
Input key states to be passed to Flash Attention API
|
| 474 |
-
value_states (`torch.Tensor`):
|
| 475 |
-
Input value states to be passed to Flash Attention API
|
| 476 |
-
attention_mask (`torch.Tensor`):
|
| 477 |
-
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 478 |
-
position of padding tokens and 1 for the position of non-padding tokens.
|
| 479 |
-
dropout (`float`):
|
| 480 |
-
Attention dropout
|
| 481 |
-
softmax_scale (`float`, *optional*):
|
| 482 |
-
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 483 |
-
"""
|
| 484 |
-
if not self._flash_attn_uses_top_left_mask:
|
| 485 |
-
causal = self.is_causal
|
| 486 |
-
else:
|
| 487 |
-
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in GemmaFlashAttention2 __init__.
|
| 488 |
-
causal = self.is_causal and query_length != 1
|
| 489 |
-
|
| 490 |
-
# Contains at least one padding token in the sequence
|
| 491 |
-
if attention_mask is not None:
|
| 492 |
-
batch_size = query_states.shape[0]
|
| 493 |
-
(
|
| 494 |
-
query_states,
|
| 495 |
-
key_states,
|
| 496 |
-
value_states,
|
| 497 |
-
indices_q,
|
| 498 |
-
cu_seq_lens,
|
| 499 |
-
max_seq_lens,
|
| 500 |
-
) = self._upad_input(
|
| 501 |
-
query_states, key_states, value_states, attention_mask, query_length
|
| 502 |
-
)
|
| 503 |
|
| 504 |
-
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 505 |
-
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 506 |
-
|
| 507 |
-
attn_output_unpad = flash_attn_varlen_func(
|
| 508 |
-
query_states,
|
| 509 |
-
key_states,
|
| 510 |
-
value_states,
|
| 511 |
-
cu_seqlens_q=cu_seqlens_q,
|
| 512 |
-
cu_seqlens_k=cu_seqlens_k,
|
| 513 |
-
max_seqlen_q=max_seqlen_in_batch_q,
|
| 514 |
-
max_seqlen_k=max_seqlen_in_batch_k,
|
| 515 |
-
dropout_p=dropout,
|
| 516 |
-
softmax_scale=softmax_scale,
|
| 517 |
-
causal=causal,
|
| 518 |
-
)
|
| 519 |
-
|
| 520 |
-
attn_output = pad_input(
|
| 521 |
-
attn_output_unpad, indices_q, batch_size, query_length
|
| 522 |
-
)
|
| 523 |
-
else:
|
| 524 |
-
attn_output = flash_attn_func(
|
| 525 |
-
query_states,
|
| 526 |
-
key_states,
|
| 527 |
-
value_states,
|
| 528 |
-
dropout,
|
| 529 |
-
softmax_scale=softmax_scale,
|
| 530 |
-
causal=causal,
|
| 531 |
-
)
|
| 532 |
-
|
| 533 |
-
return attn_output
|
| 534 |
-
|
| 535 |
-
def _upad_input(
|
| 536 |
-
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
| 537 |
-
):
|
| 538 |
-
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 539 |
-
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 540 |
-
|
| 541 |
-
key_layer = index_first_axis(
|
| 542 |
-
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
| 543 |
-
indices_k,
|
| 544 |
-
)
|
| 545 |
-
value_layer = index_first_axis(
|
| 546 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
| 547 |
-
indices_k,
|
| 548 |
-
)
|
| 549 |
-
if query_length == kv_seq_len:
|
| 550 |
-
query_layer = index_first_axis(
|
| 551 |
-
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
| 552 |
-
indices_k,
|
| 553 |
-
)
|
| 554 |
-
cu_seqlens_q = cu_seqlens_k
|
| 555 |
-
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 556 |
-
indices_q = indices_k
|
| 557 |
-
elif query_length == 1:
|
| 558 |
-
max_seqlen_in_batch_q = 1
|
| 559 |
-
cu_seqlens_q = torch.arange(
|
| 560 |
-
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 561 |
-
) # There is a memcpy here, that is very bad.
|
| 562 |
-
indices_q = cu_seqlens_q[:-1]
|
| 563 |
-
query_layer = query_layer.squeeze(1)
|
| 564 |
-
else:
|
| 565 |
-
# The -q_len: slice assumes left padding.
|
| 566 |
-
attention_mask = attention_mask[:, -query_length:]
|
| 567 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
| 568 |
-
query_layer, attention_mask
|
| 569 |
-
)
|
| 570 |
-
|
| 571 |
-
return (
|
| 572 |
-
query_layer,
|
| 573 |
-
key_layer,
|
| 574 |
-
value_layer,
|
| 575 |
-
indices_q,
|
| 576 |
-
(cu_seqlens_q, cu_seqlens_k),
|
| 577 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 578 |
-
)
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Gemma
|
| 582 |
class GemmaSdpaAttention(GemmaAttention):
|
| 583 |
"""
|
| 584 |
Gemma attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
|
@@ -586,7 +473,7 @@ class GemmaSdpaAttention(GemmaAttention):
|
|
| 586 |
SDPA API.
|
| 587 |
"""
|
| 588 |
|
| 589 |
-
#
|
| 590 |
def forward(
|
| 591 |
self,
|
| 592 |
hidden_states: torch.Tensor,
|
|
@@ -596,6 +483,7 @@ class GemmaSdpaAttention(GemmaAttention):
|
|
| 596 |
output_attentions: bool = False,
|
| 597 |
use_cache: bool = False,
|
| 598 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
| 599 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 600 |
if output_attentions:
|
| 601 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
|
@@ -619,29 +507,17 @@ class GemmaSdpaAttention(GemmaAttention):
|
|
| 619 |
key_states = self.k_proj(hidden_states)
|
| 620 |
value_states = self.v_proj(hidden_states)
|
| 621 |
|
| 622 |
-
query_states = query_states.view(
|
| 623 |
-
|
| 624 |
-
).transpose(1, 2)
|
| 625 |
-
key_states = key_states.view(
|
| 626 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 627 |
-
).transpose(1, 2)
|
| 628 |
-
value_states = value_states.view(
|
| 629 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 630 |
-
).transpose(1, 2)
|
| 631 |
-
|
| 632 |
-
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
| 633 |
-
query_states, key_states = apply_rotary_pos_emb(
|
| 634 |
-
query_states, key_states, cos, sin, None
|
| 635 |
-
)
|
| 636 |
|
| 637 |
-
|
|
|
|
| 638 |
|
| 639 |
if past_key_value is not None:
|
| 640 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 641 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 642 |
-
key_states, value_states = past_key_value.update(
|
| 643 |
-
key_states, value_states, self.layer_idx, cache_kwargs
|
| 644 |
-
)
|
| 645 |
|
| 646 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 647 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
@@ -657,15 +533,17 @@ class GemmaSdpaAttention(GemmaAttention):
|
|
| 657 |
key_states = key_states.contiguous()
|
| 658 |
value_states = value_states.contiguous()
|
| 659 |
|
| 660 |
-
#
|
| 661 |
-
#
|
|
|
|
|
|
|
| 662 |
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 663 |
query_states,
|
| 664 |
key_states,
|
| 665 |
value_states,
|
| 666 |
attn_mask=causal_mask,
|
| 667 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 668 |
-
is_causal=
|
| 669 |
)
|
| 670 |
|
| 671 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
@@ -683,35 +561,28 @@ GEMMA_ATTENTION_CLASSES = {
|
|
| 683 |
}
|
| 684 |
|
| 685 |
|
| 686 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with LLAMA->GEMMA,Llama->Gemma
|
| 687 |
class GemmaDecoderLayer(nn.Module):
|
| 688 |
def __init__(self, config: GemmaConfig, layer_idx: int):
|
| 689 |
super().__init__()
|
| 690 |
self.hidden_size = config.hidden_size
|
| 691 |
|
| 692 |
-
self.self_attn = GEMMA_ATTENTION_CLASSES[config._attn_implementation](
|
| 693 |
-
config=config, layer_idx=layer_idx
|
| 694 |
-
)
|
| 695 |
|
| 696 |
self.mlp = GemmaMLP(config)
|
| 697 |
self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 698 |
-
self.post_attention_layernorm = GemmaRMSNorm(
|
| 699 |
-
config.hidden_size, eps=config.rms_norm_eps
|
| 700 |
-
)
|
| 701 |
|
| 702 |
def forward(
|
| 703 |
self,
|
| 704 |
hidden_states: torch.Tensor,
|
| 705 |
attention_mask: Optional[torch.Tensor] = None,
|
| 706 |
position_ids: Optional[torch.LongTensor] = None,
|
| 707 |
-
past_key_value: Optional[
|
| 708 |
output_attentions: Optional[bool] = False,
|
| 709 |
use_cache: Optional[bool] = False,
|
| 710 |
cache_position: Optional[torch.LongTensor] = None,
|
| 711 |
**kwargs,
|
| 712 |
-
) -> Tuple[
|
| 713 |
-
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
| 714 |
-
]:
|
| 715 |
"""
|
| 716 |
Args:
|
| 717 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
@@ -725,12 +596,12 @@ class GemmaDecoderLayer(nn.Module):
|
|
| 725 |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 726 |
(see `past_key_values`).
|
| 727 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 728 |
"""
|
| 729 |
-
if "padding_mask" in kwargs:
|
| 730 |
-
warnings.warn(
|
| 731 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 732 |
-
)
|
| 733 |
-
|
| 734 |
residual = hidden_states
|
| 735 |
|
| 736 |
hidden_states = self.input_layernorm(hidden_states)
|
|
@@ -790,12 +661,13 @@ class GemmaPreTrainedModel(PreTrainedModel):
|
|
| 790 |
config_class = GemmaConfig
|
| 791 |
base_model_prefix = "model"
|
| 792 |
supports_gradient_checkpointing = True
|
| 793 |
-
_keep_in_fp32_modules = ["inv_freq", "rotary_emb", "cos_cached", "sin_cached"]
|
| 794 |
_no_split_modules = ["GemmaDecoderLayer"]
|
| 795 |
-
_skip_keys_device_placement = ["past_key_values"
|
| 796 |
_supports_flash_attn_2 = True
|
| 797 |
_supports_sdpa = True
|
| 798 |
_supports_cache_class = True
|
|
|
|
|
|
|
| 799 |
|
| 800 |
def _init_weights(self, module):
|
| 801 |
std = self.config.initializer_range
|
|
@@ -808,31 +680,8 @@ class GemmaPreTrainedModel(PreTrainedModel):
|
|
| 808 |
if module.padding_idx is not None:
|
| 809 |
module.weight.data[module.padding_idx].zero_()
|
| 810 |
|
| 811 |
-
def _setup_cache(
|
| 812 |
-
self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None
|
| 813 |
-
):
|
| 814 |
-
if (
|
| 815 |
-
self.config._attn_implementation == "flash_attention_2"
|
| 816 |
-
and cache_cls == StaticCache
|
| 817 |
-
):
|
| 818 |
-
raise ValueError(
|
| 819 |
-
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
| 820 |
-
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
| 821 |
-
)
|
| 822 |
-
|
| 823 |
-
for layer in self.model.layers:
|
| 824 |
-
weights = layer.self_attn.o_proj.weight
|
| 825 |
-
layer.self_attn.past_key_value = cache_cls(
|
| 826 |
-
self.config,
|
| 827 |
-
max_batch_size,
|
| 828 |
-
max_cache_len,
|
| 829 |
-
device=weights.device,
|
| 830 |
-
dtype=weights.dtype,
|
| 831 |
-
)
|
| 832 |
|
| 833 |
-
|
| 834 |
-
for layer in self.model.layers:
|
| 835 |
-
layer.self_attn.past_key_value = None
|
| 836 |
|
| 837 |
|
| 838 |
GEMMA_INPUTS_DOCSTRING = r"""
|
|
@@ -913,7 +762,6 @@ GEMMA_INPUTS_DOCSTRING = r"""
|
|
| 913 |
"The bare Gemma Model outputting raw hidden-states without any specific head on top.",
|
| 914 |
GEMMA_START_DOCSTRING,
|
| 915 |
)
|
| 916 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaModel with LLAMA->GEMMA,Llama->Gemma
|
| 917 |
class GemmaModel(GemmaPreTrainedModel):
|
| 918 |
"""
|
| 919 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`]
|
|
@@ -927,14 +775,9 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
| 927 |
self.padding_idx = config.pad_token_id
|
| 928 |
self.vocab_size = config.vocab_size
|
| 929 |
|
| 930 |
-
self.embed_tokens = nn.Embedding(
|
| 931 |
-
config.vocab_size, config.hidden_size, self.padding_idx
|
| 932 |
-
)
|
| 933 |
self.layers = nn.ModuleList(
|
| 934 |
-
[
|
| 935 |
-
GemmaDecoderLayer(config, layer_idx)
|
| 936 |
-
for layer_idx in range(config.num_hidden_layers)
|
| 937 |
-
]
|
| 938 |
)
|
| 939 |
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 940 |
self.gradient_checkpointing = False
|
|
@@ -949,13 +792,12 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
| 949 |
self.embed_tokens = value
|
| 950 |
|
| 951 |
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
| 952 |
-
# Ignore copy
|
| 953 |
def forward(
|
| 954 |
self,
|
| 955 |
input_ids: torch.LongTensor = None,
|
| 956 |
attention_mask: Optional[torch.Tensor] = None,
|
| 957 |
position_ids: Optional[torch.LongTensor] = None,
|
| 958 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 959 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 960 |
use_cache: Optional[bool] = None,
|
| 961 |
output_attentions: Optional[bool] = None,
|
|
@@ -963,20 +805,12 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
| 963 |
return_dict: Optional[bool] = None,
|
| 964 |
cache_position: Optional[torch.LongTensor] = None,
|
| 965 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 966 |
-
output_attentions =
|
| 967 |
-
output_attentions
|
| 968 |
-
if output_attentions is not None
|
| 969 |
-
else self.config.output_attentions
|
| 970 |
-
)
|
| 971 |
output_hidden_states = (
|
| 972 |
-
output_hidden_states
|
| 973 |
-
if output_hidden_states is not None
|
| 974 |
-
else self.config.output_hidden_states
|
| 975 |
)
|
| 976 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 977 |
-
return_dict =
|
| 978 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 979 |
-
)
|
| 980 |
|
| 981 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 982 |
raise ValueError(
|
|
@@ -992,24 +826,24 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
| 992 |
if inputs_embeds is None:
|
| 993 |
inputs_embeds = self.embed_tokens(input_ids)
|
| 994 |
|
| 995 |
-
|
| 996 |
-
if
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
|
|
|
| 1000 |
|
| 1001 |
if cache_position is None:
|
|
|
|
| 1002 |
cache_position = torch.arange(
|
| 1003 |
-
past_seen_tokens,
|
| 1004 |
-
past_seen_tokens + inputs_embeds.shape[1],
|
| 1005 |
-
device=inputs_embeds.device,
|
| 1006 |
)
|
| 1007 |
|
| 1008 |
if position_ids is None:
|
| 1009 |
position_ids = cache_position.unsqueeze(0)
|
| 1010 |
|
| 1011 |
causal_mask = self._update_causal_mask(
|
| 1012 |
-
attention_mask, inputs_embeds, cache_position,
|
| 1013 |
)
|
| 1014 |
|
| 1015 |
# embed positions
|
|
@@ -1018,10 +852,17 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
| 1018 |
# normalized
|
| 1019 |
# Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
|
| 1020 |
# See https://github.com/huggingface/transformers/pull/29402
|
| 1021 |
-
normalizer = torch.tensor(
|
| 1022 |
-
self.config.hidden_size**0.5, dtype=hidden_states.dtype
|
| 1023 |
-
)
|
| 1024 |
hidden_states = hidden_states * normalizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1025 |
|
| 1026 |
# decoder layers
|
| 1027 |
all_hidden_states = () if output_hidden_states else None
|
|
@@ -1068,19 +909,12 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
| 1068 |
if output_hidden_states:
|
| 1069 |
all_hidden_states += (hidden_states,)
|
| 1070 |
|
| 1071 |
-
next_cache = None
|
| 1072 |
-
if
|
| 1073 |
-
next_cache = (
|
| 1074 |
-
|
| 1075 |
-
if isinstance(next_decoder_cache, Cache)
|
| 1076 |
-
else next_decoder_cache
|
| 1077 |
-
)
|
| 1078 |
if not return_dict:
|
| 1079 |
-
return tuple(
|
| 1080 |
-
v
|
| 1081 |
-
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 1082 |
-
if v is not None
|
| 1083 |
-
)
|
| 1084 |
return BaseModelOutputWithPast(
|
| 1085 |
last_hidden_state=hidden_states,
|
| 1086 |
past_key_values=next_cache,
|
|
@@ -1093,7 +927,8 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
| 1093 |
attention_mask: torch.Tensor,
|
| 1094 |
input_tensor: torch.Tensor,
|
| 1095 |
cache_position: torch.Tensor,
|
| 1096 |
-
|
|
|
|
| 1097 |
):
|
| 1098 |
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
| 1099 |
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
|
@@ -1105,90 +940,59 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
| 1105 |
return attention_mask
|
| 1106 |
return None
|
| 1107 |
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1111 |
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 1112 |
attention_mask,
|
| 1113 |
inputs_embeds=input_tensor,
|
| 1114 |
past_key_values_length=past_seen_tokens,
|
|
|
|
| 1115 |
):
|
| 1116 |
return None
|
| 1117 |
|
| 1118 |
dtype, device = input_tensor.dtype, input_tensor.device
|
| 1119 |
min_dtype = torch.finfo(dtype).min
|
| 1120 |
sequence_length = input_tensor.shape[1]
|
| 1121 |
-
if
|
| 1122 |
-
|
| 1123 |
-
|
| 1124 |
-
target_length = self.config.max_position_embeddings
|
| 1125 |
-
else: # dynamic cache
|
| 1126 |
target_length = (
|
| 1127 |
attention_mask.shape[-1]
|
| 1128 |
if isinstance(attention_mask, torch.Tensor)
|
| 1129 |
else past_seen_tokens + sequence_length + 1
|
| 1130 |
)
|
| 1131 |
|
| 1132 |
-
|
| 1133 |
-
|
| 1134 |
-
|
|
|
|
|
|
|
| 1135 |
dtype=dtype,
|
| 1136 |
device=device,
|
|
|
|
|
|
|
|
|
|
| 1137 |
)
|
| 1138 |
-
if sequence_length != 1:
|
| 1139 |
-
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 1140 |
-
causal_mask *= torch.arange(
|
| 1141 |
-
target_length, device=device
|
| 1142 |
-
) > cache_position.reshape(-1, 1)
|
| 1143 |
-
causal_mask = causal_mask[None, None, :, :].expand(
|
| 1144 |
-
input_tensor.shape[0], 1, -1, -1
|
| 1145 |
-
)
|
| 1146 |
-
if attention_mask is not None:
|
| 1147 |
-
causal_mask = (
|
| 1148 |
-
causal_mask.clone()
|
| 1149 |
-
) # copy to contiguous memory for in-place edit
|
| 1150 |
-
if attention_mask.dim() == 2:
|
| 1151 |
-
mask_length = attention_mask.shape[-1]
|
| 1152 |
-
padding_mask = (
|
| 1153 |
-
causal_mask[:, :, :, :mask_length]
|
| 1154 |
-
+ attention_mask[:, None, None, :]
|
| 1155 |
-
)
|
| 1156 |
-
padding_mask = padding_mask == 0
|
| 1157 |
-
causal_mask[:, :, :, :mask_length] = causal_mask[
|
| 1158 |
-
:, :, :, :mask_length
|
| 1159 |
-
].masked_fill(padding_mask, min_dtype)
|
| 1160 |
-
elif attention_mask.dim() == 4:
|
| 1161 |
-
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
| 1162 |
-
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
| 1163 |
-
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
| 1164 |
-
offset = cache_position[0]
|
| 1165 |
-
else:
|
| 1166 |
-
offset = 0
|
| 1167 |
-
mask_shape = attention_mask.shape
|
| 1168 |
-
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
| 1169 |
-
causal_mask[
|
| 1170 |
-
: mask_shape[0],
|
| 1171 |
-
: mask_shape[1],
|
| 1172 |
-
offset : mask_shape[2] + offset,
|
| 1173 |
-
: mask_shape[3],
|
| 1174 |
-
] = mask_slice
|
| 1175 |
-
|
| 1176 |
if (
|
| 1177 |
self.config._attn_implementation == "sdpa"
|
| 1178 |
and attention_mask is not None
|
| 1179 |
and attention_mask.device.type == "cuda"
|
|
|
|
| 1180 |
):
|
| 1181 |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1182 |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1183 |
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1184 |
-
causal_mask = AttentionMaskConverter._unmask_unattended(
|
| 1185 |
-
causal_mask, min_dtype
|
| 1186 |
-
)
|
| 1187 |
|
| 1188 |
return causal_mask
|
| 1189 |
|
| 1190 |
|
| 1191 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->GEMMA,Llama->Gemma,llama->gemma
|
| 1192 |
class GemmaForCausalLM(GemmaPreTrainedModel):
|
| 1193 |
_tied_weights_keys = ["lm_head.weight"]
|
| 1194 |
|
|
@@ -1219,17 +1023,14 @@ class GemmaForCausalLM(GemmaPreTrainedModel):
|
|
| 1219 |
def get_decoder(self):
|
| 1220 |
return self.model
|
| 1221 |
|
| 1222 |
-
# Ignore copy
|
| 1223 |
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
| 1224 |
-
@replace_return_docstrings(
|
| 1225 |
-
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
| 1226 |
-
)
|
| 1227 |
def forward(
|
| 1228 |
self,
|
| 1229 |
input_ids: torch.LongTensor = None,
|
| 1230 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1231 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1232 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1233 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1234 |
labels: Optional[torch.LongTensor] = None,
|
| 1235 |
use_cache: Optional[bool] = None,
|
|
@@ -1263,19 +1064,11 @@ class GemmaForCausalLM(GemmaPreTrainedModel):
|
|
| 1263 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1264 |
"What is your favorite condiment?"
|
| 1265 |
```"""
|
| 1266 |
-
output_attentions =
|
| 1267 |
-
output_attentions
|
| 1268 |
-
if output_attentions is not None
|
| 1269 |
-
else self.config.output_attentions
|
| 1270 |
-
)
|
| 1271 |
output_hidden_states = (
|
| 1272 |
-
output_hidden_states
|
| 1273 |
-
if output_hidden_states is not None
|
| 1274 |
-
else self.config.output_hidden_states
|
| 1275 |
-
)
|
| 1276 |
-
return_dict = (
|
| 1277 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1278 |
)
|
|
|
|
| 1279 |
|
| 1280 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1281 |
outputs = self.model(
|
|
@@ -1326,118 +1119,68 @@ class GemmaForCausalLM(GemmaPreTrainedModel):
|
|
| 1326 |
attention_mask=None,
|
| 1327 |
inputs_embeds=None,
|
| 1328 |
cache_position=None,
|
|
|
|
|
|
|
| 1329 |
**kwargs,
|
| 1330 |
):
|
| 1331 |
-
#
|
| 1332 |
-
#
|
| 1333 |
-
|
| 1334 |
-
if past_key_values is None:
|
| 1335 |
-
past_key_values = getattr(
|
| 1336 |
-
getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None
|
| 1337 |
-
)
|
| 1338 |
-
has_static_cache = past_key_values is not None
|
| 1339 |
-
|
| 1340 |
-
past_length = 0
|
| 1341 |
if past_key_values is not None:
|
| 1342 |
-
if
|
| 1343 |
-
|
| 1344 |
-
|
| 1345 |
-
|
| 1346 |
-
else past_key_values.get_seq_length()
|
| 1347 |
-
)
|
| 1348 |
-
max_cache_length = (
|
| 1349 |
-
torch.tensor(
|
| 1350 |
-
past_key_values.get_max_length(), device=input_ids.device
|
| 1351 |
-
)
|
| 1352 |
-
if past_key_values.get_max_length() is not None
|
| 1353 |
-
else None
|
| 1354 |
-
)
|
| 1355 |
-
cache_length = (
|
| 1356 |
-
past_length
|
| 1357 |
-
if max_cache_length is None
|
| 1358 |
-
else torch.min(max_cache_length, past_length)
|
| 1359 |
-
)
|
| 1360 |
-
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
| 1361 |
-
else:
|
| 1362 |
-
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 1363 |
-
max_cache_length = None
|
| 1364 |
-
|
| 1365 |
-
# Keep only the unprocessed tokens:
|
| 1366 |
-
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 1367 |
-
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 1368 |
-
# input)
|
| 1369 |
-
if (
|
| 1370 |
-
attention_mask is not None
|
| 1371 |
-
and attention_mask.shape[1] > input_ids.shape[1]
|
| 1372 |
-
):
|
| 1373 |
-
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 1374 |
-
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 1375 |
-
# input_ids based on the past_length.
|
| 1376 |
-
elif past_length < input_ids.shape[1]:
|
| 1377 |
-
input_ids = input_ids[:, past_length:]
|
| 1378 |
-
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 1379 |
-
|
| 1380 |
-
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 1381 |
-
if (
|
| 1382 |
-
max_cache_length is not None
|
| 1383 |
-
and attention_mask is not None
|
| 1384 |
-
and cache_length + input_ids.shape[1] > max_cache_length
|
| 1385 |
-
):
|
| 1386 |
-
attention_mask = attention_mask[:, -max_cache_length:]
|
| 1387 |
|
| 1388 |
-
position_ids = kwargs.get("position_ids", None)
|
| 1389 |
if attention_mask is not None and position_ids is None:
|
| 1390 |
# create position_ids on the fly for batch generation
|
| 1391 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1392 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1393 |
if past_key_values:
|
| 1394 |
position_ids = position_ids[:, -input_ids.shape[1] :]
|
|
|
|
|
|
|
| 1395 |
|
| 1396 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1397 |
-
if inputs_embeds is not None and
|
| 1398 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1399 |
else:
|
| 1400 |
-
# The
|
| 1401 |
-
|
| 1402 |
-
# TODO: use `next_tokens` directly instead.
|
| 1403 |
-
model_inputs = {"input_ids": input_ids.contiguous()}
|
| 1404 |
|
| 1405 |
-
|
| 1406 |
-
|
| 1407 |
-
|
| 1408 |
-
|
| 1409 |
-
|
| 1410 |
-
|
| 1411 |
-
|
| 1412 |
-
else:
|
| 1413 |
-
cache_position = cache_position[-input_length:]
|
| 1414 |
|
| 1415 |
-
|
| 1416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1417 |
|
| 1418 |
model_inputs.update(
|
| 1419 |
{
|
| 1420 |
"position_ids": position_ids,
|
| 1421 |
"cache_position": cache_position,
|
| 1422 |
"past_key_values": past_key_values,
|
| 1423 |
-
"use_cache":
|
| 1424 |
"attention_mask": attention_mask,
|
| 1425 |
}
|
| 1426 |
)
|
| 1427 |
return model_inputs
|
| 1428 |
|
| 1429 |
-
@staticmethod
|
| 1430 |
-
def _reorder_cache(past_key_values, beam_idx):
|
| 1431 |
-
reordered_past = ()
|
| 1432 |
-
for layer_past in past_key_values:
|
| 1433 |
-
reordered_past += (
|
| 1434 |
-
tuple(
|
| 1435 |
-
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 1436 |
-
for past_state in layer_past
|
| 1437 |
-
),
|
| 1438 |
-
)
|
| 1439 |
-
return reordered_past
|
| 1440 |
-
|
| 1441 |
|
| 1442 |
@add_start_docstrings(
|
| 1443 |
"""
|
|
@@ -1454,7 +1197,6 @@ class GemmaForCausalLM(GemmaPreTrainedModel):
|
|
| 1454 |
""",
|
| 1455 |
GEMMA_START_DOCSTRING,
|
| 1456 |
)
|
| 1457 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->GEMMA,Llama->Gemma
|
| 1458 |
class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
| 1459 |
def __init__(self, config):
|
| 1460 |
super().__init__(config)
|
|
@@ -1477,7 +1219,7 @@ class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
|
| 1477 |
input_ids: torch.LongTensor = None,
|
| 1478 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1479 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1480 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1481 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1482 |
labels: Optional[torch.LongTensor] = None,
|
| 1483 |
use_cache: Optional[bool] = None,
|
|
@@ -1491,9 +1233,7 @@ class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
|
| 1491 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1492 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1493 |
"""
|
| 1494 |
-
return_dict =
|
| 1495 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1496 |
-
)
|
| 1497 |
|
| 1498 |
transformer_outputs = self.model(
|
| 1499 |
input_ids,
|
|
@@ -1515,25 +1255,19 @@ class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
|
| 1515 |
batch_size = inputs_embeds.shape[0]
|
| 1516 |
|
| 1517 |
if self.config.pad_token_id is None and batch_size != 1:
|
| 1518 |
-
raise ValueError(
|
| 1519 |
-
"Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1520 |
-
)
|
| 1521 |
if self.config.pad_token_id is None:
|
| 1522 |
sequence_lengths = -1
|
| 1523 |
else:
|
| 1524 |
if input_ids is not None:
|
| 1525 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1526 |
-
sequence_lengths = (
|
| 1527 |
-
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1528 |
-
)
|
| 1529 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1530 |
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1531 |
else:
|
| 1532 |
sequence_lengths = -1
|
| 1533 |
|
| 1534 |
-
pooled_logits = logits[
|
| 1535 |
-
torch.arange(batch_size, device=logits.device), sequence_lengths
|
| 1536 |
-
]
|
| 1537 |
|
| 1538 |
loss = None
|
| 1539 |
if labels is not None:
|
|
@@ -1541,9 +1275,7 @@ class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
|
| 1541 |
if self.config.problem_type is None:
|
| 1542 |
if self.num_labels == 1:
|
| 1543 |
self.config.problem_type = "regression"
|
| 1544 |
-
elif self.num_labels > 1 and (
|
| 1545 |
-
labels.dtype == torch.long or labels.dtype == torch.int
|
| 1546 |
-
):
|
| 1547 |
self.config.problem_type = "single_label_classification"
|
| 1548 |
else:
|
| 1549 |
self.config.problem_type = "multi_label_classification"
|
|
@@ -1556,9 +1288,7 @@ class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
|
| 1556 |
loss = loss_fct(pooled_logits, labels)
|
| 1557 |
elif self.config.problem_type == "single_label_classification":
|
| 1558 |
loss_fct = CrossEntropyLoss()
|
| 1559 |
-
loss = loss_fct(
|
| 1560 |
-
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
| 1561 |
-
)
|
| 1562 |
elif self.config.problem_type == "multi_label_classification":
|
| 1563 |
loss_fct = BCEWithLogitsLoss()
|
| 1564 |
loss = loss_fct(pooled_logits, labels)
|
|
@@ -1573,3 +1303,87 @@ class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
|
| 1573 |
hidden_states=transformer_outputs.hidden_states,
|
| 1574 |
attentions=transformer_outputs.attentions,
|
| 1575 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 2 |
+
# This file was automatically generated from <path_to_diff_file.py>.
|
| 3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
| 4 |
+
# the file from the diff. If any change should be done, please apply the change to the
|
| 5 |
+
# diff.py file directly.
|
| 6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 7 |
# coding=utf-8
|
| 8 |
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
| 9 |
#
|
|
|
|
| 19 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 20 |
# See the License for the specific language governing permissions and
|
| 21 |
# limitations under the License.
|
|
|
|
|
|
|
| 22 |
import math
|
|
|
|
| 23 |
from typing import List, Optional, Tuple, Union
|
| 24 |
|
| 25 |
import torch
|
|
|
|
| 26 |
import torch.utils.checkpoint
|
| 27 |
from torch import nn
|
| 28 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 29 |
|
| 30 |
+
from ...activations import ACT2FN
|
| 31 |
+
from ...cache_utils import Cache, DynamicCache, StaticCache
|
| 32 |
+
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
| 33 |
+
from ...modeling_flash_attention_utils import _flash_attention_forward
|
| 34 |
+
from ...modeling_outputs import (
|
|
|
|
|
|
|
| 35 |
BaseModelOutputWithPast,
|
| 36 |
CausalLMOutputWithPast,
|
| 37 |
SequenceClassifierOutputWithPast,
|
| 38 |
+
TokenClassifierOutput,
|
| 39 |
)
|
| 40 |
+
from ...modeling_utils import PreTrainedModel
|
| 41 |
+
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 42 |
+
from ...utils import (
|
| 43 |
add_start_docstrings,
|
| 44 |
add_start_docstrings_to_model_forward,
|
|
|
|
| 45 |
is_flash_attn_greater_or_equal_2_10,
|
| 46 |
logging,
|
| 47 |
replace_return_docstrings,
|
| 48 |
)
|
|
|
|
| 49 |
from .configuration_gemma import GemmaConfig
|
| 50 |
|
| 51 |
|
| 52 |
+
logger = logging.get_logger(__name__)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
|
| 56 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 57 |
+
attention_mask: torch.Tensor,
|
| 58 |
+
sequence_length: int,
|
| 59 |
+
target_length: int,
|
| 60 |
+
dtype: torch.dtype,
|
| 61 |
+
device: torch.device,
|
| 62 |
+
min_dtype: float,
|
| 63 |
+
cache_position: torch.Tensor,
|
| 64 |
+
batch_size: int,
|
| 65 |
+
):
|
| 66 |
+
"""
|
| 67 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 68 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 69 |
|
| 70 |
+
Args:
|
| 71 |
+
attention_mask (`torch.Tensor`):
|
| 72 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
| 73 |
+
sequence_length (`int`):
|
| 74 |
+
The sequence length being processed.
|
| 75 |
+
target_length (`int`):
|
| 76 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
| 77 |
+
dtype (`torch.dtype`):
|
| 78 |
+
The dtype to use for the 4D attention mask.
|
| 79 |
+
device (`torch.device`):
|
| 80 |
+
The device to plcae the 4D attention mask on.
|
| 81 |
+
min_dtype (`float`):
|
| 82 |
+
The minimum value representable with the dtype `dtype`.
|
| 83 |
+
cache_position (`torch.Tensor`):
|
| 84 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 85 |
+
batch_size (`torch.Tensor`):
|
| 86 |
+
Batch size.
|
| 87 |
+
"""
|
| 88 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 89 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 90 |
+
causal_mask = attention_mask
|
| 91 |
+
else:
|
| 92 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
| 93 |
+
if sequence_length != 1:
|
| 94 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 95 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 96 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 97 |
+
if attention_mask is not None:
|
| 98 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 99 |
+
mask_length = attention_mask.shape[-1]
|
| 100 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 101 |
+
padding_mask = padding_mask == 0
|
| 102 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 103 |
+
padding_mask, min_dtype
|
| 104 |
+
)
|
| 105 |
|
| 106 |
+
return causal_mask
|
| 107 |
|
| 108 |
|
| 109 |
+
class GemmaRMSNorm(nn.Module):
|
| 110 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 111 |
+
super().__init__()
|
| 112 |
+
self.eps = eps
|
| 113 |
+
self.weight = nn.Parameter(torch.zeros(dim))
|
| 114 |
|
| 115 |
+
def _norm(self, x):
|
| 116 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 117 |
|
| 118 |
+
def forward(self, x):
|
| 119 |
+
output = self._norm(x.float())
|
| 120 |
+
# Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
|
| 121 |
+
# See https://github.com/huggingface/transformers/pull/29402
|
| 122 |
+
output = output * (1.0 + self.weight.float())
|
| 123 |
+
return output.type_as(x)
|
| 124 |
|
| 125 |
+
def extra_repr(self):
|
| 126 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
|
| 129 |
ALL_LAYERNORM_LAYERS.append(GemmaRMSNorm)
|
|
|
|
| 136 |
self.dim = dim
|
| 137 |
self.max_position_embeddings = max_position_embeddings
|
| 138 |
self.base = base
|
| 139 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
|
| 140 |
+
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
|
| 141 |
|
| 142 |
@torch.no_grad()
|
| 143 |
def forward(self, x, position_ids, seq_len=None):
|
| 144 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 145 |
+
self.inv_freq.to(x.device)
|
| 146 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
position_ids_expanded = position_ids[:, None, :].float()
|
| 148 |
# Force float32 since bfloat16 loses precision on long contexts
|
| 149 |
# See https://github.com/huggingface/transformers/pull/29285
|
| 150 |
device_type = x.device.type
|
| 151 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
with torch.autocast(device_type=device_type, enabled=False):
|
| 153 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
|
|
|
|
|
| 154 |
emb = torch.cat((freqs, freqs), dim=-1)
|
| 155 |
cos = emb.cos()
|
| 156 |
sin = emb.sin()
|
| 157 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 158 |
|
| 159 |
|
| 160 |
+
class GemmaMLP(nn.Module):
|
| 161 |
+
def __init__(self, config):
|
| 162 |
+
super().__init__()
|
| 163 |
+
self.config = config
|
| 164 |
+
self.hidden_size = config.hidden_size
|
| 165 |
+
self.intermediate_size = config.intermediate_size
|
| 166 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 167 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 168 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 169 |
+
if config.hidden_activation is None:
|
| 170 |
+
logger.warning_once(
|
| 171 |
+
"`config.hidden_act` is ignored, you should use `config.hidden_activation` instead.\n"
|
| 172 |
+
"Gemma's activation function will be set to `gelu_pytorch_tanh`. Please, use\n"
|
| 173 |
+
"`config.hidden_activation` if you want to override this behaviour.\n"
|
| 174 |
+
"See https://github.com/huggingface/transformers/pull/29402 for more details."
|
| 175 |
+
)
|
| 176 |
+
config.hidden_activation = "gelu_pytorch_tanh"
|
| 177 |
+
hidden_activation = config.hidden_activation
|
| 178 |
+
self.act_fn = ACT2FN[hidden_activation]
|
| 179 |
+
|
| 180 |
+
def forward(self, x):
|
| 181 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
class GemmaLinearScalingRotaryEmbedding(GemmaRotaryEmbedding):
|
| 185 |
+
"""GemmaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 186 |
+
|
| 187 |
+
def forward(self, x, position_ids):
|
| 188 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
| 189 |
+
position_ids = position_ids.float() / self.scaling_factor
|
| 190 |
+
cos, sin = super().forward(x, position_ids)
|
| 191 |
+
return cos, sin
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
class GemmaDynamicNTKScalingRotaryEmbedding(GemmaRotaryEmbedding):
|
| 195 |
+
"""GemmaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
| 196 |
+
|
| 197 |
+
def forward(self, x, position_ids):
|
| 198 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
| 199 |
+
seq_len = torch.max(position_ids) + 1
|
| 200 |
+
if seq_len > self.max_position_embeddings:
|
| 201 |
+
base = self.base * (
|
| 202 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 203 |
+
) ** (self.dim / (self.dim - 2))
|
| 204 |
+
inv_freq = 1.0 / (
|
| 205 |
+
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
|
| 206 |
+
)
|
| 207 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
| 208 |
+
|
| 209 |
+
cos, sin = super().forward(x, position_ids)
|
| 210 |
+
return cos, sin
|
| 211 |
+
|
| 212 |
+
|
| 213 |
def rotate_half(x):
|
| 214 |
"""Rotates half the hidden dims of the input."""
|
| 215 |
x1 = x[..., : x.shape[-1] // 2]
|
|
|
|
| 217 |
return torch.cat((-x2, x1), dim=-1)
|
| 218 |
|
| 219 |
|
|
|
|
| 220 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 221 |
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 222 |
|
|
|
|
| 244 |
return q_embed, k_embed
|
| 245 |
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 248 |
"""
|
| 249 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
|
|
| 252 |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 253 |
if n_rep == 1:
|
| 254 |
return hidden_states
|
| 255 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
|
|
|
|
|
| 256 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 257 |
|
| 258 |
|
| 259 |
class GemmaAttention(nn.Module):
|
| 260 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 261 |
|
|
|
|
| 262 |
def __init__(self, config: GemmaConfig, layer_idx: Optional[int] = None):
|
| 263 |
super().__init__()
|
| 264 |
self.config = config
|
|
|
|
| 279 |
self.max_position_embeddings = config.max_position_embeddings
|
| 280 |
self.rope_theta = config.rope_theta
|
| 281 |
self.is_causal = True
|
| 282 |
+
self.scaling = 1 / math.sqrt(config.head_dim)
|
| 283 |
|
| 284 |
if self.hidden_size % self.num_heads != 0:
|
| 285 |
raise ValueError(
|
|
|
|
| 287 |
f" and `num_heads`: {self.num_heads})."
|
| 288 |
)
|
| 289 |
|
| 290 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
| 291 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 292 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 293 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
self.rotary_emb = GemmaRotaryEmbedding(
|
| 295 |
self.head_dim,
|
| 296 |
max_position_embeddings=self.max_position_embeddings,
|
|
|
|
| 306 |
output_attentions: bool = False,
|
| 307 |
use_cache: bool = False,
|
| 308 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
| 309 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 310 |
bsz, q_len, _ = hidden_states.size()
|
| 311 |
|
|
|
|
| 313 |
key_states = self.k_proj(hidden_states)
|
| 314 |
value_states = self.v_proj(hidden_states)
|
| 315 |
|
| 316 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 317 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 318 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 319 |
+
|
| 320 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 321 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
|
| 323 |
if past_key_value is not None:
|
| 324 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 325 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 326 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
|
|
| 327 |
|
| 328 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 329 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 330 |
|
| 331 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
|
|
|
|
|
|
|
| 332 |
|
| 333 |
if attention_mask is not None: # no matter the length, we just slice it
|
| 334 |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 335 |
attn_weights = attn_weights + causal_mask
|
| 336 |
|
| 337 |
# upcast attention to fp32
|
| 338 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 339 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
attn_output = torch.matmul(attn_weights, value_states)
|
| 341 |
|
| 342 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
|
|
| 356 |
return attn_output, attn_weights, past_key_value
|
| 357 |
|
| 358 |
|
|
|
|
| 359 |
class GemmaFlashAttention2(GemmaAttention):
|
| 360 |
"""
|
| 361 |
Gemma flash attention module. This module inherits from `GemmaAttention` as the weights of the module stays
|
|
|
|
| 371 |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 372 |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 373 |
|
|
|
|
| 374 |
def forward(
|
| 375 |
self,
|
| 376 |
hidden_states: torch.Tensor,
|
|
|
|
| 380 |
output_attentions: bool = False,
|
| 381 |
use_cache: bool = False,
|
| 382 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
| 383 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 384 |
+
if isinstance(past_key_value, StaticCache):
|
| 385 |
+
raise ValueError(
|
| 386 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
| 387 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
output_attentions = False
|
| 391 |
|
| 392 |
bsz, q_len, _ = hidden_states.size()
|
|
|
|
| 398 |
# Flash attention requires the input to have the shape
|
| 399 |
# batch_size x seq_length x head_dim x hidden_dim
|
| 400 |
# therefore we just need to keep the original shape
|
| 401 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 402 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 403 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
|
| 405 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 406 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 407 |
|
| 408 |
if past_key_value is not None:
|
| 409 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 410 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 411 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
|
|
| 412 |
|
| 413 |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 414 |
# to be able to avoid many of these transpose/reshape/view.
|
|
|
|
| 444 |
key_states = key_states.to(target_dtype)
|
| 445 |
value_states = value_states.to(target_dtype)
|
| 446 |
|
| 447 |
+
attn_output = _flash_attention_forward(
|
| 448 |
query_states,
|
| 449 |
key_states,
|
| 450 |
value_states,
|
| 451 |
attention_mask,
|
| 452 |
q_len,
|
| 453 |
+
position_ids=position_ids,
|
| 454 |
dropout=dropout_rate,
|
| 455 |
+
sliding_window=getattr(self, "sliding_window", None),
|
| 456 |
+
is_causal=self.is_causal,
|
| 457 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
| 458 |
)
|
| 459 |
|
| 460 |
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
|
|
|
| 465 |
|
| 466 |
return attn_output, attn_weights, past_key_value
|
| 467 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 469 |
class GemmaSdpaAttention(GemmaAttention):
|
| 470 |
"""
|
| 471 |
Gemma attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
|
|
|
| 473 |
SDPA API.
|
| 474 |
"""
|
| 475 |
|
| 476 |
+
# Adapted from GemmaAttention.forward
|
| 477 |
def forward(
|
| 478 |
self,
|
| 479 |
hidden_states: torch.Tensor,
|
|
|
|
| 483 |
output_attentions: bool = False,
|
| 484 |
use_cache: bool = False,
|
| 485 |
cache_position: Optional[torch.LongTensor] = None,
|
| 486 |
+
**kwargs,
|
| 487 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 488 |
if output_attentions:
|
| 489 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
|
|
|
| 507 |
key_states = self.k_proj(hidden_states)
|
| 508 |
value_states = self.v_proj(hidden_states)
|
| 509 |
|
| 510 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 511 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 512 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 513 |
|
| 514 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 515 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 516 |
|
| 517 |
if past_key_value is not None:
|
| 518 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 519 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 520 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
|
|
| 521 |
|
| 522 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 523 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
| 533 |
key_states = key_states.contiguous()
|
| 534 |
value_states = value_states.contiguous()
|
| 535 |
|
| 536 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 537 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 538 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
| 539 |
+
|
| 540 |
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 541 |
query_states,
|
| 542 |
key_states,
|
| 543 |
value_states,
|
| 544 |
attn_mask=causal_mask,
|
| 545 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 546 |
+
is_causal=is_causal,
|
| 547 |
)
|
| 548 |
|
| 549 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
| 561 |
}
|
| 562 |
|
| 563 |
|
|
|
|
| 564 |
class GemmaDecoderLayer(nn.Module):
|
| 565 |
def __init__(self, config: GemmaConfig, layer_idx: int):
|
| 566 |
super().__init__()
|
| 567 |
self.hidden_size = config.hidden_size
|
| 568 |
|
| 569 |
+
self.self_attn = GEMMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
|
|
|
|
|
|
| 570 |
|
| 571 |
self.mlp = GemmaMLP(config)
|
| 572 |
self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 573 |
+
self.post_attention_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
|
|
|
| 574 |
|
| 575 |
def forward(
|
| 576 |
self,
|
| 577 |
hidden_states: torch.Tensor,
|
| 578 |
attention_mask: Optional[torch.Tensor] = None,
|
| 579 |
position_ids: Optional[torch.LongTensor] = None,
|
| 580 |
+
past_key_value: Optional[Cache] = None,
|
| 581 |
output_attentions: Optional[bool] = False,
|
| 582 |
use_cache: Optional[bool] = False,
|
| 583 |
cache_position: Optional[torch.LongTensor] = None,
|
| 584 |
**kwargs,
|
| 585 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
|
|
|
|
|
| 586 |
"""
|
| 587 |
Args:
|
| 588 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
|
|
| 596 |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 597 |
(see `past_key_values`).
|
| 598 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 599 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 600 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
| 601 |
+
kwargs (`dict`, *optional*):
|
| 602 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 603 |
+
into the model
|
| 604 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 605 |
residual = hidden_states
|
| 606 |
|
| 607 |
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
| 661 |
config_class = GemmaConfig
|
| 662 |
base_model_prefix = "model"
|
| 663 |
supports_gradient_checkpointing = True
|
|
|
|
| 664 |
_no_split_modules = ["GemmaDecoderLayer"]
|
| 665 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 666 |
_supports_flash_attn_2 = True
|
| 667 |
_supports_sdpa = True
|
| 668 |
_supports_cache_class = True
|
| 669 |
+
_supports_quantized_cache = True
|
| 670 |
+
_supports_static_cache = True
|
| 671 |
|
| 672 |
def _init_weights(self, module):
|
| 673 |
std = self.config.initializer_range
|
|
|
|
| 680 |
if module.padding_idx is not None:
|
| 681 |
module.weight.data[module.padding_idx].zero_()
|
| 682 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 683 |
|
| 684 |
+
_CONFIG_FOR_DOC = "GemmaConfig"
|
|
|
|
|
|
|
| 685 |
|
| 686 |
|
| 687 |
GEMMA_INPUTS_DOCSTRING = r"""
|
|
|
|
| 762 |
"The bare Gemma Model outputting raw hidden-states without any specific head on top.",
|
| 763 |
GEMMA_START_DOCSTRING,
|
| 764 |
)
|
|
|
|
| 765 |
class GemmaModel(GemmaPreTrainedModel):
|
| 766 |
"""
|
| 767 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`]
|
|
|
|
| 775 |
self.padding_idx = config.pad_token_id
|
| 776 |
self.vocab_size = config.vocab_size
|
| 777 |
|
| 778 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
|
|
|
|
|
| 779 |
self.layers = nn.ModuleList(
|
| 780 |
+
[GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
|
|
|
|
|
|
|
|
| 781 |
)
|
| 782 |
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 783 |
self.gradient_checkpointing = False
|
|
|
|
| 792 |
self.embed_tokens = value
|
| 793 |
|
| 794 |
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
|
|
|
| 795 |
def forward(
|
| 796 |
self,
|
| 797 |
input_ids: torch.LongTensor = None,
|
| 798 |
attention_mask: Optional[torch.Tensor] = None,
|
| 799 |
position_ids: Optional[torch.LongTensor] = None,
|
| 800 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 801 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 802 |
use_cache: Optional[bool] = None,
|
| 803 |
output_attentions: Optional[bool] = None,
|
|
|
|
| 805 |
return_dict: Optional[bool] = None,
|
| 806 |
cache_position: Optional[torch.LongTensor] = None,
|
| 807 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 808 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
|
|
|
|
|
|
|
|
|
| 809 |
output_hidden_states = (
|
| 810 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
|
|
|
| 811 |
)
|
| 812 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 813 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
| 814 |
|
| 815 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 816 |
raise ValueError(
|
|
|
|
| 826 |
if inputs_embeds is None:
|
| 827 |
inputs_embeds = self.embed_tokens(input_ids)
|
| 828 |
|
| 829 |
+
return_legacy_cache = False # noqa: F841
|
| 830 |
+
if (
|
| 831 |
+
use_cache and not isinstance(past_key_values, Cache) and not self.training
|
| 832 |
+
): # kept for BC (non `Cache` `past_key_values` inputs)
|
| 833 |
+
return_legacy_cache = True # noqa: F841
|
| 834 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 835 |
|
| 836 |
if cache_position is None:
|
| 837 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 838 |
cache_position = torch.arange(
|
| 839 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
|
|
|
|
|
| 840 |
)
|
| 841 |
|
| 842 |
if position_ids is None:
|
| 843 |
position_ids = cache_position.unsqueeze(0)
|
| 844 |
|
| 845 |
causal_mask = self._update_causal_mask(
|
| 846 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 847 |
)
|
| 848 |
|
| 849 |
# embed positions
|
|
|
|
| 852 |
# normalized
|
| 853 |
# Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
|
| 854 |
# See https://github.com/huggingface/transformers/pull/29402
|
| 855 |
+
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
|
|
|
|
|
|
|
| 856 |
hidden_states = hidden_states * normalizer
|
| 857 |
+
if (
|
| 858 |
+
use_cache and not isinstance(past_key_values, Cache) and not self.training
|
| 859 |
+
): # kept for BC (non `Cache` `past_key_values` inputs)
|
| 860 |
+
return_legacy_cache = True
|
| 861 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 862 |
+
logger.warning_once(
|
| 863 |
+
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
| 864 |
+
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
| 865 |
+
)
|
| 866 |
|
| 867 |
# decoder layers
|
| 868 |
all_hidden_states = () if output_hidden_states else None
|
|
|
|
| 909 |
if output_hidden_states:
|
| 910 |
all_hidden_states += (hidden_states,)
|
| 911 |
|
| 912 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 913 |
+
if return_legacy_cache:
|
| 914 |
+
next_cache = next_cache.to_legacy_cache()
|
| 915 |
+
|
|
|
|
|
|
|
|
|
|
| 916 |
if not return_dict:
|
| 917 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 918 |
return BaseModelOutputWithPast(
|
| 919 |
last_hidden_state=hidden_states,
|
| 920 |
past_key_values=next_cache,
|
|
|
|
| 927 |
attention_mask: torch.Tensor,
|
| 928 |
input_tensor: torch.Tensor,
|
| 929 |
cache_position: torch.Tensor,
|
| 930 |
+
past_key_values: Cache,
|
| 931 |
+
output_attentions: bool,
|
| 932 |
):
|
| 933 |
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
| 934 |
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
|
|
|
| 940 |
return attention_mask
|
| 941 |
return None
|
| 942 |
|
| 943 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 944 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 945 |
+
# to infer the attention mask.
|
| 946 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 947 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 948 |
+
|
| 949 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 950 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
| 951 |
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 952 |
attention_mask,
|
| 953 |
inputs_embeds=input_tensor,
|
| 954 |
past_key_values_length=past_seen_tokens,
|
| 955 |
+
is_training=self.training,
|
| 956 |
):
|
| 957 |
return None
|
| 958 |
|
| 959 |
dtype, device = input_tensor.dtype, input_tensor.device
|
| 960 |
min_dtype = torch.finfo(dtype).min
|
| 961 |
sequence_length = input_tensor.shape[1]
|
| 962 |
+
if using_static_cache:
|
| 963 |
+
target_length = past_key_values.get_max_length()
|
| 964 |
+
else:
|
|
|
|
|
|
|
| 965 |
target_length = (
|
| 966 |
attention_mask.shape[-1]
|
| 967 |
if isinstance(attention_mask, torch.Tensor)
|
| 968 |
else past_seen_tokens + sequence_length + 1
|
| 969 |
)
|
| 970 |
|
| 971 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 972 |
+
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
| 973 |
+
attention_mask,
|
| 974 |
+
sequence_length=sequence_length,
|
| 975 |
+
target_length=target_length,
|
| 976 |
dtype=dtype,
|
| 977 |
device=device,
|
| 978 |
+
min_dtype=min_dtype,
|
| 979 |
+
cache_position=cache_position,
|
| 980 |
+
batch_size=input_tensor.shape[0],
|
| 981 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 982 |
if (
|
| 983 |
self.config._attn_implementation == "sdpa"
|
| 984 |
and attention_mask is not None
|
| 985 |
and attention_mask.device.type == "cuda"
|
| 986 |
+
and not output_attentions
|
| 987 |
):
|
| 988 |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 989 |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 990 |
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 991 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
|
|
|
|
|
|
| 992 |
|
| 993 |
return causal_mask
|
| 994 |
|
| 995 |
|
|
|
|
| 996 |
class GemmaForCausalLM(GemmaPreTrainedModel):
|
| 997 |
_tied_weights_keys = ["lm_head.weight"]
|
| 998 |
|
|
|
|
| 1023 |
def get_decoder(self):
|
| 1024 |
return self.model
|
| 1025 |
|
|
|
|
| 1026 |
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
| 1027 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
|
|
|
|
|
| 1028 |
def forward(
|
| 1029 |
self,
|
| 1030 |
input_ids: torch.LongTensor = None,
|
| 1031 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1032 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1033 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 1034 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1035 |
labels: Optional[torch.LongTensor] = None,
|
| 1036 |
use_cache: Optional[bool] = None,
|
|
|
|
| 1064 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1065 |
"What is your favorite condiment?"
|
| 1066 |
```"""
|
| 1067 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1068 |
output_hidden_states = (
|
| 1069 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1070 |
)
|
| 1071 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1072 |
|
| 1073 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1074 |
outputs = self.model(
|
|
|
|
| 1119 |
attention_mask=None,
|
| 1120 |
inputs_embeds=None,
|
| 1121 |
cache_position=None,
|
| 1122 |
+
position_ids=None,
|
| 1123 |
+
use_cache=True,
|
| 1124 |
**kwargs,
|
| 1125 |
):
|
| 1126 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
| 1127 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
| 1128 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1129 |
if past_key_values is not None:
|
| 1130 |
+
if inputs_embeds is not None: # Exception 1
|
| 1131 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
| 1132 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
| 1133 |
+
input_ids = input_ids[:, cache_position]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1134 |
|
|
|
|
| 1135 |
if attention_mask is not None and position_ids is None:
|
| 1136 |
# create position_ids on the fly for batch generation
|
| 1137 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1138 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1139 |
if past_key_values:
|
| 1140 |
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1141 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
| 1142 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
| 1143 |
|
| 1144 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1145 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
| 1146 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
| 1147 |
else:
|
| 1148 |
+
# The clone here is for the same reason as for `position_ids`.
|
| 1149 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
|
|
|
|
|
|
| 1150 |
|
| 1151 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
| 1152 |
+
if model_inputs["inputs_embeds"] is not None:
|
| 1153 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
| 1154 |
+
device = model_inputs["inputs_embeds"].device
|
| 1155 |
+
else:
|
| 1156 |
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
| 1157 |
+
device = model_inputs["input_ids"].device
|
|
|
|
|
|
|
| 1158 |
|
| 1159 |
+
dtype = self.lm_head.weight.dtype
|
| 1160 |
+
min_dtype = torch.finfo(dtype).min
|
| 1161 |
+
|
| 1162 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1163 |
+
attention_mask,
|
| 1164 |
+
sequence_length=sequence_length,
|
| 1165 |
+
target_length=past_key_values.get_max_length(),
|
| 1166 |
+
dtype=dtype,
|
| 1167 |
+
device=device,
|
| 1168 |
+
min_dtype=min_dtype,
|
| 1169 |
+
cache_position=cache_position,
|
| 1170 |
+
batch_size=batch_size,
|
| 1171 |
+
)
|
| 1172 |
|
| 1173 |
model_inputs.update(
|
| 1174 |
{
|
| 1175 |
"position_ids": position_ids,
|
| 1176 |
"cache_position": cache_position,
|
| 1177 |
"past_key_values": past_key_values,
|
| 1178 |
+
"use_cache": use_cache,
|
| 1179 |
"attention_mask": attention_mask,
|
| 1180 |
}
|
| 1181 |
)
|
| 1182 |
return model_inputs
|
| 1183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1184 |
|
| 1185 |
@add_start_docstrings(
|
| 1186 |
"""
|
|
|
|
| 1197 |
""",
|
| 1198 |
GEMMA_START_DOCSTRING,
|
| 1199 |
)
|
|
|
|
| 1200 |
class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
| 1201 |
def __init__(self, config):
|
| 1202 |
super().__init__(config)
|
|
|
|
| 1219 |
input_ids: torch.LongTensor = None,
|
| 1220 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1221 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1222 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 1223 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1224 |
labels: Optional[torch.LongTensor] = None,
|
| 1225 |
use_cache: Optional[bool] = None,
|
|
|
|
| 1233 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1234 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1235 |
"""
|
| 1236 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
| 1237 |
|
| 1238 |
transformer_outputs = self.model(
|
| 1239 |
input_ids,
|
|
|
|
| 1255 |
batch_size = inputs_embeds.shape[0]
|
| 1256 |
|
| 1257 |
if self.config.pad_token_id is None and batch_size != 1:
|
| 1258 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
|
|
|
|
|
| 1259 |
if self.config.pad_token_id is None:
|
| 1260 |
sequence_lengths = -1
|
| 1261 |
else:
|
| 1262 |
if input_ids is not None:
|
| 1263 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1264 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
|
|
|
|
|
|
| 1265 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1266 |
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1267 |
else:
|
| 1268 |
sequence_lengths = -1
|
| 1269 |
|
| 1270 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
|
|
|
| 1271 |
|
| 1272 |
loss = None
|
| 1273 |
if labels is not None:
|
|
|
|
| 1275 |
if self.config.problem_type is None:
|
| 1276 |
if self.num_labels == 1:
|
| 1277 |
self.config.problem_type = "regression"
|
| 1278 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
|
|
|
|
|
| 1279 |
self.config.problem_type = "single_label_classification"
|
| 1280 |
else:
|
| 1281 |
self.config.problem_type = "multi_label_classification"
|
|
|
|
| 1288 |
loss = loss_fct(pooled_logits, labels)
|
| 1289 |
elif self.config.problem_type == "single_label_classification":
|
| 1290 |
loss_fct = CrossEntropyLoss()
|
| 1291 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
|
|
|
| 1292 |
elif self.config.problem_type == "multi_label_classification":
|
| 1293 |
loss_fct = BCEWithLogitsLoss()
|
| 1294 |
loss = loss_fct(pooled_logits, labels)
|
|
|
|
| 1303 |
hidden_states=transformer_outputs.hidden_states,
|
| 1304 |
attentions=transformer_outputs.attentions,
|
| 1305 |
)
|
| 1306 |
+
|
| 1307 |
+
|
| 1308 |
+
@add_start_docstrings(
|
| 1309 |
+
"""
|
| 1310 |
+
The Gemma Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
| 1311 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
| 1312 |
+
""",
|
| 1313 |
+
GEMMA_START_DOCSTRING,
|
| 1314 |
+
)
|
| 1315 |
+
class GemmaForTokenClassification(GemmaPreTrainedModel):
|
| 1316 |
+
def __init__(self, config):
|
| 1317 |
+
super().__init__(config)
|
| 1318 |
+
self.num_labels = config.num_labels
|
| 1319 |
+
self.model = GemmaModel(config)
|
| 1320 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
| 1321 |
+
classifier_dropout = config.classifier_dropout
|
| 1322 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
| 1323 |
+
classifier_dropout = config.hidden_dropout
|
| 1324 |
+
else:
|
| 1325 |
+
classifier_dropout = 0.1
|
| 1326 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1327 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
| 1328 |
+
|
| 1329 |
+
# Initialize weights and apply final processing
|
| 1330 |
+
self.post_init()
|
| 1331 |
+
|
| 1332 |
+
def get_input_embeddings(self):
|
| 1333 |
+
return self.model.embed_tokens
|
| 1334 |
+
|
| 1335 |
+
def set_input_embeddings(self, value):
|
| 1336 |
+
self.model.embed_tokens = value
|
| 1337 |
+
|
| 1338 |
+
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
| 1339 |
+
def forward(
|
| 1340 |
+
self,
|
| 1341 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1342 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1343 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1344 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1345 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1346 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1347 |
+
use_cache: Optional[bool] = None,
|
| 1348 |
+
output_attentions: Optional[bool] = None,
|
| 1349 |
+
output_hidden_states: Optional[bool] = None,
|
| 1350 |
+
return_dict: Optional[bool] = None,
|
| 1351 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
| 1352 |
+
r"""
|
| 1353 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1354 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1355 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1356 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1357 |
+
"""
|
| 1358 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1359 |
+
|
| 1360 |
+
outputs = self.model(
|
| 1361 |
+
input_ids,
|
| 1362 |
+
attention_mask=attention_mask,
|
| 1363 |
+
position_ids=position_ids,
|
| 1364 |
+
past_key_values=past_key_values,
|
| 1365 |
+
inputs_embeds=inputs_embeds,
|
| 1366 |
+
use_cache=use_cache,
|
| 1367 |
+
output_attentions=output_attentions,
|
| 1368 |
+
output_hidden_states=output_hidden_states,
|
| 1369 |
+
return_dict=return_dict,
|
| 1370 |
+
)
|
| 1371 |
+
sequence_output = outputs[0]
|
| 1372 |
+
sequence_output = self.dropout(sequence_output)
|
| 1373 |
+
logits = self.score(sequence_output)
|
| 1374 |
+
|
| 1375 |
+
loss = None
|
| 1376 |
+
if labels is not None:
|
| 1377 |
+
loss_fct = CrossEntropyLoss()
|
| 1378 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1379 |
+
|
| 1380 |
+
if not return_dict:
|
| 1381 |
+
output = (logits,) + outputs[2:]
|
| 1382 |
+
return ((loss,) + output) if loss is not None else output
|
| 1383 |
+
|
| 1384 |
+
return TokenClassifierOutput(
|
| 1385 |
+
loss=loss,
|
| 1386 |
+
logits=logits,
|
| 1387 |
+
hidden_states=outputs.hidden_states,
|
| 1388 |
+
attentions=outputs.attentions,
|
| 1389 |
+
)
|