Update modeling_gemma.py
Browse filesrebasing on latest transformers
- modeling_gemma.py +387 -573
modeling_gemma.py
CHANGED
@@ -1,3 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# coding=utf-8
|
2 |
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
@@ -13,74 +19,111 @@
|
|
13 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
# See the License for the specific language governing permissions and
|
15 |
# limitations under the License.
|
16 |
-
""" PyTorch Gemma model."""
|
17 |
-
|
18 |
import math
|
19 |
-
import warnings
|
20 |
from typing import List, Optional, Tuple, Union
|
21 |
|
22 |
import torch
|
23 |
-
import torch.nn.functional as F
|
24 |
import torch.utils.checkpoint
|
25 |
from torch import nn
|
26 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
|
28 |
-
from
|
29 |
-
from
|
30 |
-
from
|
31 |
-
|
32 |
-
|
33 |
-
)
|
34 |
-
from transformers.modeling_outputs import (
|
35 |
BaseModelOutputWithPast,
|
36 |
CausalLMOutputWithPast,
|
37 |
SequenceClassifierOutputWithPast,
|
|
|
38 |
)
|
39 |
-
from
|
40 |
-
from
|
41 |
-
from
|
42 |
add_start_docstrings,
|
43 |
add_start_docstrings_to_model_forward,
|
44 |
-
is_flash_attn_2_available,
|
45 |
is_flash_attn_greater_or_equal_2_10,
|
46 |
logging,
|
47 |
replace_return_docstrings,
|
48 |
)
|
49 |
-
from transformers.utils.import_utils import is_torch_fx_available
|
50 |
from .configuration_gemma import GemmaConfig
|
51 |
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
|
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
def
|
73 |
-
|
74 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
75 |
-
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
76 |
-
cu_seqlens = F.pad(
|
77 |
-
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
78 |
-
)
|
79 |
-
return (
|
80 |
-
indices,
|
81 |
-
cu_seqlens,
|
82 |
-
max_seqlen_in_batch,
|
83 |
-
)
|
84 |
|
85 |
|
86 |
ALL_LAYERNORM_LAYERS.append(GemmaRMSNorm)
|
@@ -93,45 +136,80 @@ class GemmaRotaryEmbedding(nn.Module):
|
|
93 |
self.dim = dim
|
94 |
self.max_position_embeddings = max_position_embeddings
|
95 |
self.base = base
|
96 |
-
|
97 |
-
self.inv_freq =
|
98 |
|
99 |
@torch.no_grad()
|
100 |
def forward(self, x, position_ids, seq_len=None):
|
101 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
102 |
-
|
103 |
-
|
104 |
-
self.base
|
105 |
-
** (
|
106 |
-
torch.arange(
|
107 |
-
0, self.dim, 2, dtype=torch.int64, device=x.device
|
108 |
-
).float()
|
109 |
-
/ self.dim
|
110 |
-
)
|
111 |
-
)
|
112 |
-
inv_freq_expanded = (
|
113 |
-
self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
114 |
-
)
|
115 |
position_ids_expanded = position_ids[:, None, :].float()
|
116 |
# Force float32 since bfloat16 loses precision on long contexts
|
117 |
# See https://github.com/huggingface/transformers/pull/29285
|
118 |
device_type = x.device.type
|
119 |
-
device_type = (
|
120 |
-
device_type
|
121 |
-
if isinstance(device_type, str) and device_type != "mps"
|
122 |
-
else "cpu"
|
123 |
-
)
|
124 |
with torch.autocast(device_type=device_type, enabled=False):
|
125 |
-
freqs = (
|
126 |
-
inv_freq_expanded.float() @ position_ids_expanded.float()
|
127 |
-
).transpose(1, 2)
|
128 |
emb = torch.cat((freqs, freqs), dim=-1)
|
129 |
cos = emb.cos()
|
130 |
sin = emb.sin()
|
131 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
132 |
|
133 |
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
def rotate_half(x):
|
136 |
"""Rotates half the hidden dims of the input."""
|
137 |
x1 = x[..., : x.shape[-1] // 2]
|
@@ -139,7 +217,6 @@ def rotate_half(x):
|
|
139 |
return torch.cat((-x2, x1), dim=-1)
|
140 |
|
141 |
|
142 |
-
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
143 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
144 |
"""Applies Rotary Position Embedding to the query and key tensors.
|
145 |
|
@@ -167,33 +244,6 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
167 |
return q_embed, k_embed
|
168 |
|
169 |
|
170 |
-
class GemmaMLP(nn.Module):
|
171 |
-
def __init__(self, config):
|
172 |
-
super().__init__()
|
173 |
-
self.config = config
|
174 |
-
self.hidden_size = config.hidden_size
|
175 |
-
self.intermediate_size = config.intermediate_size
|
176 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
177 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
178 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
179 |
-
if config.hidden_activation is None:
|
180 |
-
logger.warning_once(
|
181 |
-
"Gemma's activation function should be approximate GeLU and not exact GeLU.\n"
|
182 |
-
"Changing the activation function to `gelu_pytorch_tanh`."
|
183 |
-
f"if you want to use the legacy `{config.hidden_act}`, "
|
184 |
-
f"edit the `model.config` to set `hidden_activation={config.hidden_act}` "
|
185 |
-
" instead of `hidden_act`. See https://github.com/huggingface/transformers/pull/29402 for more details."
|
186 |
-
)
|
187 |
-
hidden_activation = "gelu_pytorch_tanh"
|
188 |
-
else:
|
189 |
-
hidden_activation = config.hidden_activation
|
190 |
-
self.act_fn = ACT2FN[hidden_activation]
|
191 |
-
|
192 |
-
def forward(self, x):
|
193 |
-
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
194 |
-
|
195 |
-
|
196 |
-
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
197 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
198 |
"""
|
199 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
@@ -202,16 +252,13 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
202 |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
203 |
if n_rep == 1:
|
204 |
return hidden_states
|
205 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(
|
206 |
-
batch, num_key_value_heads, n_rep, slen, head_dim
|
207 |
-
)
|
208 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
209 |
|
210 |
|
211 |
class GemmaAttention(nn.Module):
|
212 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
213 |
|
214 |
-
# Ignore copy
|
215 |
def __init__(self, config: GemmaConfig, layer_idx: Optional[int] = None):
|
216 |
super().__init__()
|
217 |
self.config = config
|
@@ -232,6 +279,7 @@ class GemmaAttention(nn.Module):
|
|
232 |
self.max_position_embeddings = config.max_position_embeddings
|
233 |
self.rope_theta = config.rope_theta
|
234 |
self.is_causal = True
|
|
|
235 |
|
236 |
if self.hidden_size % self.num_heads != 0:
|
237 |
raise ValueError(
|
@@ -239,22 +287,10 @@ class GemmaAttention(nn.Module):
|
|
239 |
f" and `num_heads`: {self.num_heads})."
|
240 |
)
|
241 |
|
242 |
-
self.q_proj = nn.Linear(
|
243 |
-
|
244 |
-
)
|
245 |
-
self.
|
246 |
-
self.hidden_size,
|
247 |
-
self.num_key_value_heads * self.head_dim,
|
248 |
-
bias=config.attention_bias,
|
249 |
-
)
|
250 |
-
self.v_proj = nn.Linear(
|
251 |
-
self.hidden_size,
|
252 |
-
self.num_key_value_heads * self.head_dim,
|
253 |
-
bias=config.attention_bias,
|
254 |
-
)
|
255 |
-
self.o_proj = nn.Linear(
|
256 |
-
self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias
|
257 |
-
)
|
258 |
self.rotary_emb = GemmaRotaryEmbedding(
|
259 |
self.head_dim,
|
260 |
max_position_embeddings=self.max_position_embeddings,
|
@@ -270,7 +306,6 @@ class GemmaAttention(nn.Module):
|
|
270 |
output_attentions: bool = False,
|
271 |
use_cache: bool = False,
|
272 |
cache_position: Optional[torch.LongTensor] = None,
|
273 |
-
**kwargs,
|
274 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
275 |
bsz, q_len, _ = hidden_states.size()
|
276 |
|
@@ -278,47 +313,30 @@ class GemmaAttention(nn.Module):
|
|
278 |
key_states = self.k_proj(hidden_states)
|
279 |
value_states = self.v_proj(hidden_states)
|
280 |
|
281 |
-
query_states = query_states.view(
|
282 |
-
|
283 |
-
).transpose(1, 2)
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
value_states = value_states.view(
|
288 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
289 |
-
).transpose(1, 2)
|
290 |
-
|
291 |
-
past_key_value = getattr(self, "past_key_value", past_key_value)
|
292 |
-
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
293 |
-
query_states, key_states = apply_rotary_pos_emb(
|
294 |
-
query_states, key_states, cos, sin, None
|
295 |
-
)
|
296 |
|
297 |
if past_key_value is not None:
|
298 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
299 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
300 |
-
key_states, value_states = past_key_value.update(
|
301 |
-
key_states, value_states, self.layer_idx, cache_kwargs
|
302 |
-
)
|
303 |
|
304 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
305 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
306 |
|
307 |
-
attn_weights = torch.matmul(
|
308 |
-
query_states, key_states.transpose(2, 3)
|
309 |
-
) / math.sqrt(self.head_dim)
|
310 |
|
311 |
if attention_mask is not None: # no matter the length, we just slice it
|
312 |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
313 |
attn_weights = attn_weights + causal_mask
|
314 |
|
315 |
# upcast attention to fp32
|
316 |
-
attn_weights = nn.functional.softmax(
|
317 |
-
|
318 |
-
).to(query_states.dtype)
|
319 |
-
attn_weights = nn.functional.dropout(
|
320 |
-
attn_weights, p=self.attention_dropout, training=self.training
|
321 |
-
)
|
322 |
attn_output = torch.matmul(attn_weights, value_states)
|
323 |
|
324 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
@@ -338,7 +356,6 @@ class GemmaAttention(nn.Module):
|
|
338 |
return attn_output, attn_weights, past_key_value
|
339 |
|
340 |
|
341 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->Gemma
|
342 |
class GemmaFlashAttention2(GemmaAttention):
|
343 |
"""
|
344 |
Gemma flash attention module. This module inherits from `GemmaAttention` as the weights of the module stays
|
@@ -354,7 +371,6 @@ class GemmaFlashAttention2(GemmaAttention):
|
|
354 |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
355 |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
356 |
|
357 |
-
# Ignore copy
|
358 |
def forward(
|
359 |
self,
|
360 |
hidden_states: torch.Tensor,
|
@@ -364,8 +380,13 @@ class GemmaFlashAttention2(GemmaAttention):
|
|
364 |
output_attentions: bool = False,
|
365 |
use_cache: bool = False,
|
366 |
cache_position: Optional[torch.LongTensor] = None,
|
367 |
-
**kwargs,
|
368 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
output_attentions = False
|
370 |
|
371 |
bsz, q_len, _ = hidden_states.size()
|
@@ -377,29 +398,17 @@ class GemmaFlashAttention2(GemmaAttention):
|
|
377 |
# Flash attention requires the input to have the shape
|
378 |
# batch_size x seq_length x head_dim x hidden_dim
|
379 |
# therefore we just need to keep the original shape
|
380 |
-
query_states = query_states.view(
|
381 |
-
|
382 |
-
).transpose(1, 2)
|
383 |
-
key_states = key_states.view(
|
384 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
385 |
-
).transpose(1, 2)
|
386 |
-
value_states = value_states.view(
|
387 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
388 |
-
).transpose(1, 2)
|
389 |
-
|
390 |
-
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
391 |
-
query_states, key_states = apply_rotary_pos_emb(
|
392 |
-
query_states, key_states, cos, sin, None
|
393 |
-
)
|
394 |
|
395 |
-
|
|
|
396 |
|
397 |
if past_key_value is not None:
|
398 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
399 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
400 |
-
key_states, value_states = past_key_value.update(
|
401 |
-
key_states, value_states, self.layer_idx, cache_kwargs
|
402 |
-
)
|
403 |
|
404 |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
405 |
# to be able to avoid many of these transpose/reshape/view.
|
@@ -435,13 +444,17 @@ class GemmaFlashAttention2(GemmaAttention):
|
|
435 |
key_states = key_states.to(target_dtype)
|
436 |
value_states = value_states.to(target_dtype)
|
437 |
|
438 |
-
attn_output =
|
439 |
query_states,
|
440 |
key_states,
|
441 |
value_states,
|
442 |
attention_mask,
|
443 |
q_len,
|
|
|
444 |
dropout=dropout_rate,
|
|
|
|
|
|
|
445 |
)
|
446 |
|
447 |
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
@@ -452,133 +465,7 @@ class GemmaFlashAttention2(GemmaAttention):
|
|
452 |
|
453 |
return attn_output, attn_weights, past_key_value
|
454 |
|
455 |
-
def _flash_attention_forward(
|
456 |
-
self,
|
457 |
-
query_states,
|
458 |
-
key_states,
|
459 |
-
value_states,
|
460 |
-
attention_mask,
|
461 |
-
query_length,
|
462 |
-
dropout=0.0,
|
463 |
-
softmax_scale=None,
|
464 |
-
):
|
465 |
-
"""
|
466 |
-
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
467 |
-
first unpad the input, then computes the attention scores and pad the final attention scores.
|
468 |
-
|
469 |
-
Args:
|
470 |
-
query_states (`torch.Tensor`):
|
471 |
-
Input query states to be passed to Flash Attention API
|
472 |
-
key_states (`torch.Tensor`):
|
473 |
-
Input key states to be passed to Flash Attention API
|
474 |
-
value_states (`torch.Tensor`):
|
475 |
-
Input value states to be passed to Flash Attention API
|
476 |
-
attention_mask (`torch.Tensor`):
|
477 |
-
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
478 |
-
position of padding tokens and 1 for the position of non-padding tokens.
|
479 |
-
dropout (`float`):
|
480 |
-
Attention dropout
|
481 |
-
softmax_scale (`float`, *optional*):
|
482 |
-
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
483 |
-
"""
|
484 |
-
if not self._flash_attn_uses_top_left_mask:
|
485 |
-
causal = self.is_causal
|
486 |
-
else:
|
487 |
-
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in GemmaFlashAttention2 __init__.
|
488 |
-
causal = self.is_causal and query_length != 1
|
489 |
-
|
490 |
-
# Contains at least one padding token in the sequence
|
491 |
-
if attention_mask is not None:
|
492 |
-
batch_size = query_states.shape[0]
|
493 |
-
(
|
494 |
-
query_states,
|
495 |
-
key_states,
|
496 |
-
value_states,
|
497 |
-
indices_q,
|
498 |
-
cu_seq_lens,
|
499 |
-
max_seq_lens,
|
500 |
-
) = self._upad_input(
|
501 |
-
query_states, key_states, value_states, attention_mask, query_length
|
502 |
-
)
|
503 |
|
504 |
-
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
505 |
-
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
506 |
-
|
507 |
-
attn_output_unpad = flash_attn_varlen_func(
|
508 |
-
query_states,
|
509 |
-
key_states,
|
510 |
-
value_states,
|
511 |
-
cu_seqlens_q=cu_seqlens_q,
|
512 |
-
cu_seqlens_k=cu_seqlens_k,
|
513 |
-
max_seqlen_q=max_seqlen_in_batch_q,
|
514 |
-
max_seqlen_k=max_seqlen_in_batch_k,
|
515 |
-
dropout_p=dropout,
|
516 |
-
softmax_scale=softmax_scale,
|
517 |
-
causal=causal,
|
518 |
-
)
|
519 |
-
|
520 |
-
attn_output = pad_input(
|
521 |
-
attn_output_unpad, indices_q, batch_size, query_length
|
522 |
-
)
|
523 |
-
else:
|
524 |
-
attn_output = flash_attn_func(
|
525 |
-
query_states,
|
526 |
-
key_states,
|
527 |
-
value_states,
|
528 |
-
dropout,
|
529 |
-
softmax_scale=softmax_scale,
|
530 |
-
causal=causal,
|
531 |
-
)
|
532 |
-
|
533 |
-
return attn_output
|
534 |
-
|
535 |
-
def _upad_input(
|
536 |
-
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
537 |
-
):
|
538 |
-
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
539 |
-
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
540 |
-
|
541 |
-
key_layer = index_first_axis(
|
542 |
-
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
543 |
-
indices_k,
|
544 |
-
)
|
545 |
-
value_layer = index_first_axis(
|
546 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
547 |
-
indices_k,
|
548 |
-
)
|
549 |
-
if query_length == kv_seq_len:
|
550 |
-
query_layer = index_first_axis(
|
551 |
-
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
552 |
-
indices_k,
|
553 |
-
)
|
554 |
-
cu_seqlens_q = cu_seqlens_k
|
555 |
-
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
556 |
-
indices_q = indices_k
|
557 |
-
elif query_length == 1:
|
558 |
-
max_seqlen_in_batch_q = 1
|
559 |
-
cu_seqlens_q = torch.arange(
|
560 |
-
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
561 |
-
) # There is a memcpy here, that is very bad.
|
562 |
-
indices_q = cu_seqlens_q[:-1]
|
563 |
-
query_layer = query_layer.squeeze(1)
|
564 |
-
else:
|
565 |
-
# The -q_len: slice assumes left padding.
|
566 |
-
attention_mask = attention_mask[:, -query_length:]
|
567 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
568 |
-
query_layer, attention_mask
|
569 |
-
)
|
570 |
-
|
571 |
-
return (
|
572 |
-
query_layer,
|
573 |
-
key_layer,
|
574 |
-
value_layer,
|
575 |
-
indices_q,
|
576 |
-
(cu_seqlens_q, cu_seqlens_k),
|
577 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
578 |
-
)
|
579 |
-
|
580 |
-
|
581 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Gemma
|
582 |
class GemmaSdpaAttention(GemmaAttention):
|
583 |
"""
|
584 |
Gemma attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
@@ -586,7 +473,7 @@ class GemmaSdpaAttention(GemmaAttention):
|
|
586 |
SDPA API.
|
587 |
"""
|
588 |
|
589 |
-
#
|
590 |
def forward(
|
591 |
self,
|
592 |
hidden_states: torch.Tensor,
|
@@ -596,6 +483,7 @@ class GemmaSdpaAttention(GemmaAttention):
|
|
596 |
output_attentions: bool = False,
|
597 |
use_cache: bool = False,
|
598 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
599 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
600 |
if output_attentions:
|
601 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
@@ -619,29 +507,17 @@ class GemmaSdpaAttention(GemmaAttention):
|
|
619 |
key_states = self.k_proj(hidden_states)
|
620 |
value_states = self.v_proj(hidden_states)
|
621 |
|
622 |
-
query_states = query_states.view(
|
623 |
-
|
624 |
-
).transpose(1, 2)
|
625 |
-
key_states = key_states.view(
|
626 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
627 |
-
).transpose(1, 2)
|
628 |
-
value_states = value_states.view(
|
629 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
630 |
-
).transpose(1, 2)
|
631 |
-
|
632 |
-
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
633 |
-
query_states, key_states = apply_rotary_pos_emb(
|
634 |
-
query_states, key_states, cos, sin, None
|
635 |
-
)
|
636 |
|
637 |
-
|
|
|
638 |
|
639 |
if past_key_value is not None:
|
640 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
641 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
642 |
-
key_states, value_states = past_key_value.update(
|
643 |
-
key_states, value_states, self.layer_idx, cache_kwargs
|
644 |
-
)
|
645 |
|
646 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
647 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
@@ -657,15 +533,17 @@ class GemmaSdpaAttention(GemmaAttention):
|
|
657 |
key_states = key_states.contiguous()
|
658 |
value_states = value_states.contiguous()
|
659 |
|
660 |
-
#
|
661 |
-
#
|
|
|
|
|
662 |
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
663 |
query_states,
|
664 |
key_states,
|
665 |
value_states,
|
666 |
attn_mask=causal_mask,
|
667 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
668 |
-
is_causal=
|
669 |
)
|
670 |
|
671 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
@@ -683,35 +561,28 @@ GEMMA_ATTENTION_CLASSES = {
|
|
683 |
}
|
684 |
|
685 |
|
686 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with LLAMA->GEMMA,Llama->Gemma
|
687 |
class GemmaDecoderLayer(nn.Module):
|
688 |
def __init__(self, config: GemmaConfig, layer_idx: int):
|
689 |
super().__init__()
|
690 |
self.hidden_size = config.hidden_size
|
691 |
|
692 |
-
self.self_attn = GEMMA_ATTENTION_CLASSES[config._attn_implementation](
|
693 |
-
config=config, layer_idx=layer_idx
|
694 |
-
)
|
695 |
|
696 |
self.mlp = GemmaMLP(config)
|
697 |
self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
698 |
-
self.post_attention_layernorm = GemmaRMSNorm(
|
699 |
-
config.hidden_size, eps=config.rms_norm_eps
|
700 |
-
)
|
701 |
|
702 |
def forward(
|
703 |
self,
|
704 |
hidden_states: torch.Tensor,
|
705 |
attention_mask: Optional[torch.Tensor] = None,
|
706 |
position_ids: Optional[torch.LongTensor] = None,
|
707 |
-
past_key_value: Optional[
|
708 |
output_attentions: Optional[bool] = False,
|
709 |
use_cache: Optional[bool] = False,
|
710 |
cache_position: Optional[torch.LongTensor] = None,
|
711 |
**kwargs,
|
712 |
-
) -> Tuple[
|
713 |
-
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
714 |
-
]:
|
715 |
"""
|
716 |
Args:
|
717 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
@@ -725,12 +596,12 @@ class GemmaDecoderLayer(nn.Module):
|
|
725 |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
726 |
(see `past_key_values`).
|
727 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
|
|
|
|
|
|
|
|
|
|
728 |
"""
|
729 |
-
if "padding_mask" in kwargs:
|
730 |
-
warnings.warn(
|
731 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
732 |
-
)
|
733 |
-
|
734 |
residual = hidden_states
|
735 |
|
736 |
hidden_states = self.input_layernorm(hidden_states)
|
@@ -790,12 +661,13 @@ class GemmaPreTrainedModel(PreTrainedModel):
|
|
790 |
config_class = GemmaConfig
|
791 |
base_model_prefix = "model"
|
792 |
supports_gradient_checkpointing = True
|
793 |
-
_keep_in_fp32_modules = ["inv_freq", "rotary_emb", "cos_cached", "sin_cached"]
|
794 |
_no_split_modules = ["GemmaDecoderLayer"]
|
795 |
-
_skip_keys_device_placement = ["past_key_values"
|
796 |
_supports_flash_attn_2 = True
|
797 |
_supports_sdpa = True
|
798 |
_supports_cache_class = True
|
|
|
|
|
799 |
|
800 |
def _init_weights(self, module):
|
801 |
std = self.config.initializer_range
|
@@ -808,31 +680,8 @@ class GemmaPreTrainedModel(PreTrainedModel):
|
|
808 |
if module.padding_idx is not None:
|
809 |
module.weight.data[module.padding_idx].zero_()
|
810 |
|
811 |
-
def _setup_cache(
|
812 |
-
self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None
|
813 |
-
):
|
814 |
-
if (
|
815 |
-
self.config._attn_implementation == "flash_attention_2"
|
816 |
-
and cache_cls == StaticCache
|
817 |
-
):
|
818 |
-
raise ValueError(
|
819 |
-
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
820 |
-
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
821 |
-
)
|
822 |
-
|
823 |
-
for layer in self.model.layers:
|
824 |
-
weights = layer.self_attn.o_proj.weight
|
825 |
-
layer.self_attn.past_key_value = cache_cls(
|
826 |
-
self.config,
|
827 |
-
max_batch_size,
|
828 |
-
max_cache_len,
|
829 |
-
device=weights.device,
|
830 |
-
dtype=weights.dtype,
|
831 |
-
)
|
832 |
|
833 |
-
|
834 |
-
for layer in self.model.layers:
|
835 |
-
layer.self_attn.past_key_value = None
|
836 |
|
837 |
|
838 |
GEMMA_INPUTS_DOCSTRING = r"""
|
@@ -913,7 +762,6 @@ GEMMA_INPUTS_DOCSTRING = r"""
|
|
913 |
"The bare Gemma Model outputting raw hidden-states without any specific head on top.",
|
914 |
GEMMA_START_DOCSTRING,
|
915 |
)
|
916 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaModel with LLAMA->GEMMA,Llama->Gemma
|
917 |
class GemmaModel(GemmaPreTrainedModel):
|
918 |
"""
|
919 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`]
|
@@ -927,14 +775,9 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
927 |
self.padding_idx = config.pad_token_id
|
928 |
self.vocab_size = config.vocab_size
|
929 |
|
930 |
-
self.embed_tokens = nn.Embedding(
|
931 |
-
config.vocab_size, config.hidden_size, self.padding_idx
|
932 |
-
)
|
933 |
self.layers = nn.ModuleList(
|
934 |
-
[
|
935 |
-
GemmaDecoderLayer(config, layer_idx)
|
936 |
-
for layer_idx in range(config.num_hidden_layers)
|
937 |
-
]
|
938 |
)
|
939 |
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
940 |
self.gradient_checkpointing = False
|
@@ -949,13 +792,12 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
949 |
self.embed_tokens = value
|
950 |
|
951 |
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
952 |
-
# Ignore copy
|
953 |
def forward(
|
954 |
self,
|
955 |
input_ids: torch.LongTensor = None,
|
956 |
attention_mask: Optional[torch.Tensor] = None,
|
957 |
position_ids: Optional[torch.LongTensor] = None,
|
958 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
959 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
960 |
use_cache: Optional[bool] = None,
|
961 |
output_attentions: Optional[bool] = None,
|
@@ -963,20 +805,12 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
963 |
return_dict: Optional[bool] = None,
|
964 |
cache_position: Optional[torch.LongTensor] = None,
|
965 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
966 |
-
output_attentions =
|
967 |
-
output_attentions
|
968 |
-
if output_attentions is not None
|
969 |
-
else self.config.output_attentions
|
970 |
-
)
|
971 |
output_hidden_states = (
|
972 |
-
output_hidden_states
|
973 |
-
if output_hidden_states is not None
|
974 |
-
else self.config.output_hidden_states
|
975 |
)
|
976 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
977 |
-
return_dict =
|
978 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
979 |
-
)
|
980 |
|
981 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
982 |
raise ValueError(
|
@@ -992,24 +826,24 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
992 |
if inputs_embeds is None:
|
993 |
inputs_embeds = self.embed_tokens(input_ids)
|
994 |
|
995 |
-
|
996 |
-
if
|
997 |
-
|
998 |
-
|
999 |
-
|
|
|
1000 |
|
1001 |
if cache_position is None:
|
|
|
1002 |
cache_position = torch.arange(
|
1003 |
-
past_seen_tokens,
|
1004 |
-
past_seen_tokens + inputs_embeds.shape[1],
|
1005 |
-
device=inputs_embeds.device,
|
1006 |
)
|
1007 |
|
1008 |
if position_ids is None:
|
1009 |
position_ids = cache_position.unsqueeze(0)
|
1010 |
|
1011 |
causal_mask = self._update_causal_mask(
|
1012 |
-
attention_mask, inputs_embeds, cache_position,
|
1013 |
)
|
1014 |
|
1015 |
# embed positions
|
@@ -1018,10 +852,17 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
1018 |
# normalized
|
1019 |
# Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
|
1020 |
# See https://github.com/huggingface/transformers/pull/29402
|
1021 |
-
normalizer = torch.tensor(
|
1022 |
-
self.config.hidden_size**0.5, dtype=hidden_states.dtype
|
1023 |
-
)
|
1024 |
hidden_states = hidden_states * normalizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1025 |
|
1026 |
# decoder layers
|
1027 |
all_hidden_states = () if output_hidden_states else None
|
@@ -1068,19 +909,12 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
1068 |
if output_hidden_states:
|
1069 |
all_hidden_states += (hidden_states,)
|
1070 |
|
1071 |
-
next_cache = None
|
1072 |
-
if
|
1073 |
-
next_cache = (
|
1074 |
-
|
1075 |
-
if isinstance(next_decoder_cache, Cache)
|
1076 |
-
else next_decoder_cache
|
1077 |
-
)
|
1078 |
if not return_dict:
|
1079 |
-
return tuple(
|
1080 |
-
v
|
1081 |
-
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1082 |
-
if v is not None
|
1083 |
-
)
|
1084 |
return BaseModelOutputWithPast(
|
1085 |
last_hidden_state=hidden_states,
|
1086 |
past_key_values=next_cache,
|
@@ -1093,7 +927,8 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
1093 |
attention_mask: torch.Tensor,
|
1094 |
input_tensor: torch.Tensor,
|
1095 |
cache_position: torch.Tensor,
|
1096 |
-
|
|
|
1097 |
):
|
1098 |
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1099 |
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
@@ -1105,90 +940,59 @@ class GemmaModel(GemmaPreTrainedModel):
|
|
1105 |
return attention_mask
|
1106 |
return None
|
1107 |
|
1108 |
-
|
1109 |
-
|
1110 |
-
|
|
|
|
|
|
|
|
|
|
|
1111 |
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1112 |
attention_mask,
|
1113 |
inputs_embeds=input_tensor,
|
1114 |
past_key_values_length=past_seen_tokens,
|
|
|
1115 |
):
|
1116 |
return None
|
1117 |
|
1118 |
dtype, device = input_tensor.dtype, input_tensor.device
|
1119 |
min_dtype = torch.finfo(dtype).min
|
1120 |
sequence_length = input_tensor.shape[1]
|
1121 |
-
if
|
1122 |
-
|
1123 |
-
|
1124 |
-
target_length = self.config.max_position_embeddings
|
1125 |
-
else: # dynamic cache
|
1126 |
target_length = (
|
1127 |
attention_mask.shape[-1]
|
1128 |
if isinstance(attention_mask, torch.Tensor)
|
1129 |
else past_seen_tokens + sequence_length + 1
|
1130 |
)
|
1131 |
|
1132 |
-
|
1133 |
-
|
1134 |
-
|
|
|
|
|
1135 |
dtype=dtype,
|
1136 |
device=device,
|
|
|
|
|
|
|
1137 |
)
|
1138 |
-
if sequence_length != 1:
|
1139 |
-
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1140 |
-
causal_mask *= torch.arange(
|
1141 |
-
target_length, device=device
|
1142 |
-
) > cache_position.reshape(-1, 1)
|
1143 |
-
causal_mask = causal_mask[None, None, :, :].expand(
|
1144 |
-
input_tensor.shape[0], 1, -1, -1
|
1145 |
-
)
|
1146 |
-
if attention_mask is not None:
|
1147 |
-
causal_mask = (
|
1148 |
-
causal_mask.clone()
|
1149 |
-
) # copy to contiguous memory for in-place edit
|
1150 |
-
if attention_mask.dim() == 2:
|
1151 |
-
mask_length = attention_mask.shape[-1]
|
1152 |
-
padding_mask = (
|
1153 |
-
causal_mask[:, :, :, :mask_length]
|
1154 |
-
+ attention_mask[:, None, None, :]
|
1155 |
-
)
|
1156 |
-
padding_mask = padding_mask == 0
|
1157 |
-
causal_mask[:, :, :, :mask_length] = causal_mask[
|
1158 |
-
:, :, :, :mask_length
|
1159 |
-
].masked_fill(padding_mask, min_dtype)
|
1160 |
-
elif attention_mask.dim() == 4:
|
1161 |
-
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
1162 |
-
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
1163 |
-
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
1164 |
-
offset = cache_position[0]
|
1165 |
-
else:
|
1166 |
-
offset = 0
|
1167 |
-
mask_shape = attention_mask.shape
|
1168 |
-
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
1169 |
-
causal_mask[
|
1170 |
-
: mask_shape[0],
|
1171 |
-
: mask_shape[1],
|
1172 |
-
offset : mask_shape[2] + offset,
|
1173 |
-
: mask_shape[3],
|
1174 |
-
] = mask_slice
|
1175 |
-
|
1176 |
if (
|
1177 |
self.config._attn_implementation == "sdpa"
|
1178 |
and attention_mask is not None
|
1179 |
and attention_mask.device.type == "cuda"
|
|
|
1180 |
):
|
1181 |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1182 |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1183 |
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1184 |
-
causal_mask = AttentionMaskConverter._unmask_unattended(
|
1185 |
-
causal_mask, min_dtype
|
1186 |
-
)
|
1187 |
|
1188 |
return causal_mask
|
1189 |
|
1190 |
|
1191 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->GEMMA,Llama->Gemma,llama->gemma
|
1192 |
class GemmaForCausalLM(GemmaPreTrainedModel):
|
1193 |
_tied_weights_keys = ["lm_head.weight"]
|
1194 |
|
@@ -1219,17 +1023,14 @@ class GemmaForCausalLM(GemmaPreTrainedModel):
|
|
1219 |
def get_decoder(self):
|
1220 |
return self.model
|
1221 |
|
1222 |
-
# Ignore copy
|
1223 |
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
1224 |
-
@replace_return_docstrings(
|
1225 |
-
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
1226 |
-
)
|
1227 |
def forward(
|
1228 |
self,
|
1229 |
input_ids: torch.LongTensor = None,
|
1230 |
attention_mask: Optional[torch.Tensor] = None,
|
1231 |
position_ids: Optional[torch.LongTensor] = None,
|
1232 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1233 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1234 |
labels: Optional[torch.LongTensor] = None,
|
1235 |
use_cache: Optional[bool] = None,
|
@@ -1263,19 +1064,11 @@ class GemmaForCausalLM(GemmaPreTrainedModel):
|
|
1263 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1264 |
"What is your favorite condiment?"
|
1265 |
```"""
|
1266 |
-
output_attentions =
|
1267 |
-
output_attentions
|
1268 |
-
if output_attentions is not None
|
1269 |
-
else self.config.output_attentions
|
1270 |
-
)
|
1271 |
output_hidden_states = (
|
1272 |
-
output_hidden_states
|
1273 |
-
if output_hidden_states is not None
|
1274 |
-
else self.config.output_hidden_states
|
1275 |
-
)
|
1276 |
-
return_dict = (
|
1277 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
1278 |
)
|
|
|
1279 |
|
1280 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1281 |
outputs = self.model(
|
@@ -1326,118 +1119,68 @@ class GemmaForCausalLM(GemmaPreTrainedModel):
|
|
1326 |
attention_mask=None,
|
1327 |
inputs_embeds=None,
|
1328 |
cache_position=None,
|
|
|
|
|
1329 |
**kwargs,
|
1330 |
):
|
1331 |
-
#
|
1332 |
-
#
|
1333 |
-
|
1334 |
-
if past_key_values is None:
|
1335 |
-
past_key_values = getattr(
|
1336 |
-
getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None
|
1337 |
-
)
|
1338 |
-
has_static_cache = past_key_values is not None
|
1339 |
-
|
1340 |
-
past_length = 0
|
1341 |
if past_key_values is not None:
|
1342 |
-
if
|
1343 |
-
|
1344 |
-
|
1345 |
-
|
1346 |
-
else past_key_values.get_seq_length()
|
1347 |
-
)
|
1348 |
-
max_cache_length = (
|
1349 |
-
torch.tensor(
|
1350 |
-
past_key_values.get_max_length(), device=input_ids.device
|
1351 |
-
)
|
1352 |
-
if past_key_values.get_max_length() is not None
|
1353 |
-
else None
|
1354 |
-
)
|
1355 |
-
cache_length = (
|
1356 |
-
past_length
|
1357 |
-
if max_cache_length is None
|
1358 |
-
else torch.min(max_cache_length, past_length)
|
1359 |
-
)
|
1360 |
-
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
1361 |
-
else:
|
1362 |
-
cache_length = past_length = past_key_values[0][0].shape[2]
|
1363 |
-
max_cache_length = None
|
1364 |
-
|
1365 |
-
# Keep only the unprocessed tokens:
|
1366 |
-
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1367 |
-
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1368 |
-
# input)
|
1369 |
-
if (
|
1370 |
-
attention_mask is not None
|
1371 |
-
and attention_mask.shape[1] > input_ids.shape[1]
|
1372 |
-
):
|
1373 |
-
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1374 |
-
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1375 |
-
# input_ids based on the past_length.
|
1376 |
-
elif past_length < input_ids.shape[1]:
|
1377 |
-
input_ids = input_ids[:, past_length:]
|
1378 |
-
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1379 |
-
|
1380 |
-
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1381 |
-
if (
|
1382 |
-
max_cache_length is not None
|
1383 |
-
and attention_mask is not None
|
1384 |
-
and cache_length + input_ids.shape[1] > max_cache_length
|
1385 |
-
):
|
1386 |
-
attention_mask = attention_mask[:, -max_cache_length:]
|
1387 |
|
1388 |
-
position_ids = kwargs.get("position_ids", None)
|
1389 |
if attention_mask is not None and position_ids is None:
|
1390 |
# create position_ids on the fly for batch generation
|
1391 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
1392 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
1393 |
if past_key_values:
|
1394 |
position_ids = position_ids[:, -input_ids.shape[1] :]
|
|
|
|
|
1395 |
|
1396 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1397 |
-
if inputs_embeds is not None and
|
1398 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
1399 |
else:
|
1400 |
-
# The
|
1401 |
-
|
1402 |
-
# TODO: use `next_tokens` directly instead.
|
1403 |
-
model_inputs = {"input_ids": input_ids.contiguous()}
|
1404 |
|
1405 |
-
|
1406 |
-
|
1407 |
-
|
1408 |
-
|
1409 |
-
|
1410 |
-
|
1411 |
-
|
1412 |
-
else:
|
1413 |
-
cache_position = cache_position[-input_length:]
|
1414 |
|
1415 |
-
|
1416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1417 |
|
1418 |
model_inputs.update(
|
1419 |
{
|
1420 |
"position_ids": position_ids,
|
1421 |
"cache_position": cache_position,
|
1422 |
"past_key_values": past_key_values,
|
1423 |
-
"use_cache":
|
1424 |
"attention_mask": attention_mask,
|
1425 |
}
|
1426 |
)
|
1427 |
return model_inputs
|
1428 |
|
1429 |
-
@staticmethod
|
1430 |
-
def _reorder_cache(past_key_values, beam_idx):
|
1431 |
-
reordered_past = ()
|
1432 |
-
for layer_past in past_key_values:
|
1433 |
-
reordered_past += (
|
1434 |
-
tuple(
|
1435 |
-
past_state.index_select(0, beam_idx.to(past_state.device))
|
1436 |
-
for past_state in layer_past
|
1437 |
-
),
|
1438 |
-
)
|
1439 |
-
return reordered_past
|
1440 |
-
|
1441 |
|
1442 |
@add_start_docstrings(
|
1443 |
"""
|
@@ -1454,7 +1197,6 @@ class GemmaForCausalLM(GemmaPreTrainedModel):
|
|
1454 |
""",
|
1455 |
GEMMA_START_DOCSTRING,
|
1456 |
)
|
1457 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->GEMMA,Llama->Gemma
|
1458 |
class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
1459 |
def __init__(self, config):
|
1460 |
super().__init__(config)
|
@@ -1477,7 +1219,7 @@ class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
|
1477 |
input_ids: torch.LongTensor = None,
|
1478 |
attention_mask: Optional[torch.Tensor] = None,
|
1479 |
position_ids: Optional[torch.LongTensor] = None,
|
1480 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1481 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1482 |
labels: Optional[torch.LongTensor] = None,
|
1483 |
use_cache: Optional[bool] = None,
|
@@ -1491,9 +1233,7 @@ class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
|
1491 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1492 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1493 |
"""
|
1494 |
-
return_dict =
|
1495 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
1496 |
-
)
|
1497 |
|
1498 |
transformer_outputs = self.model(
|
1499 |
input_ids,
|
@@ -1515,25 +1255,19 @@ class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
|
1515 |
batch_size = inputs_embeds.shape[0]
|
1516 |
|
1517 |
if self.config.pad_token_id is None and batch_size != 1:
|
1518 |
-
raise ValueError(
|
1519 |
-
"Cannot handle batch sizes > 1 if no padding token is defined."
|
1520 |
-
)
|
1521 |
if self.config.pad_token_id is None:
|
1522 |
sequence_lengths = -1
|
1523 |
else:
|
1524 |
if input_ids is not None:
|
1525 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1526 |
-
sequence_lengths = (
|
1527 |
-
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1528 |
-
)
|
1529 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1530 |
sequence_lengths = sequence_lengths.to(logits.device)
|
1531 |
else:
|
1532 |
sequence_lengths = -1
|
1533 |
|
1534 |
-
pooled_logits = logits[
|
1535 |
-
torch.arange(batch_size, device=logits.device), sequence_lengths
|
1536 |
-
]
|
1537 |
|
1538 |
loss = None
|
1539 |
if labels is not None:
|
@@ -1541,9 +1275,7 @@ class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
|
1541 |
if self.config.problem_type is None:
|
1542 |
if self.num_labels == 1:
|
1543 |
self.config.problem_type = "regression"
|
1544 |
-
elif self.num_labels > 1 and (
|
1545 |
-
labels.dtype == torch.long or labels.dtype == torch.int
|
1546 |
-
):
|
1547 |
self.config.problem_type = "single_label_classification"
|
1548 |
else:
|
1549 |
self.config.problem_type = "multi_label_classification"
|
@@ -1556,9 +1288,7 @@ class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
|
1556 |
loss = loss_fct(pooled_logits, labels)
|
1557 |
elif self.config.problem_type == "single_label_classification":
|
1558 |
loss_fct = CrossEntropyLoss()
|
1559 |
-
loss = loss_fct(
|
1560 |
-
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
1561 |
-
)
|
1562 |
elif self.config.problem_type == "multi_label_classification":
|
1563 |
loss_fct = BCEWithLogitsLoss()
|
1564 |
loss = loss_fct(pooled_logits, labels)
|
@@ -1573,3 +1303,87 @@ class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
|
1573 |
hidden_states=transformer_outputs.hidden_states,
|
1574 |
attentions=transformer_outputs.attentions,
|
1575 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from <path_to_diff_file.py>.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the diff. If any change should be done, please apply the change to the
|
5 |
+
# diff.py file directly.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
# coding=utf-8
|
8 |
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
9 |
#
|
|
|
19 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
# See the License for the specific language governing permissions and
|
21 |
# limitations under the License.
|
|
|
|
|
22 |
import math
|
|
|
23 |
from typing import List, Optional, Tuple, Union
|
24 |
|
25 |
import torch
|
|
|
26 |
import torch.utils.checkpoint
|
27 |
from torch import nn
|
28 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
|
30 |
+
from ...activations import ACT2FN
|
31 |
+
from ...cache_utils import Cache, DynamicCache, StaticCache
|
32 |
+
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
33 |
+
from ...modeling_flash_attention_utils import _flash_attention_forward
|
34 |
+
from ...modeling_outputs import (
|
|
|
|
|
35 |
BaseModelOutputWithPast,
|
36 |
CausalLMOutputWithPast,
|
37 |
SequenceClassifierOutputWithPast,
|
38 |
+
TokenClassifierOutput,
|
39 |
)
|
40 |
+
from ...modeling_utils import PreTrainedModel
|
41 |
+
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
|
42 |
+
from ...utils import (
|
43 |
add_start_docstrings,
|
44 |
add_start_docstrings_to_model_forward,
|
|
|
45 |
is_flash_attn_greater_or_equal_2_10,
|
46 |
logging,
|
47 |
replace_return_docstrings,
|
48 |
)
|
|
|
49 |
from .configuration_gemma import GemmaConfig
|
50 |
|
51 |
|
52 |
+
logger = logging.get_logger(__name__)
|
53 |
+
|
54 |
+
|
55 |
+
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
|
56 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
57 |
+
attention_mask: torch.Tensor,
|
58 |
+
sequence_length: int,
|
59 |
+
target_length: int,
|
60 |
+
dtype: torch.dtype,
|
61 |
+
device: torch.device,
|
62 |
+
min_dtype: float,
|
63 |
+
cache_position: torch.Tensor,
|
64 |
+
batch_size: int,
|
65 |
+
):
|
66 |
+
"""
|
67 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
68 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
69 |
|
70 |
+
Args:
|
71 |
+
attention_mask (`torch.Tensor`):
|
72 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
73 |
+
sequence_length (`int`):
|
74 |
+
The sequence length being processed.
|
75 |
+
target_length (`int`):
|
76 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
77 |
+
dtype (`torch.dtype`):
|
78 |
+
The dtype to use for the 4D attention mask.
|
79 |
+
device (`torch.device`):
|
80 |
+
The device to plcae the 4D attention mask on.
|
81 |
+
min_dtype (`float`):
|
82 |
+
The minimum value representable with the dtype `dtype`.
|
83 |
+
cache_position (`torch.Tensor`):
|
84 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
85 |
+
batch_size (`torch.Tensor`):
|
86 |
+
Batch size.
|
87 |
+
"""
|
88 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
89 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
90 |
+
causal_mask = attention_mask
|
91 |
+
else:
|
92 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
93 |
+
if sequence_length != 1:
|
94 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
95 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
96 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
97 |
+
if attention_mask is not None:
|
98 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
99 |
+
mask_length = attention_mask.shape[-1]
|
100 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
101 |
+
padding_mask = padding_mask == 0
|
102 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
103 |
+
padding_mask, min_dtype
|
104 |
+
)
|
105 |
|
106 |
+
return causal_mask
|
107 |
|
108 |
|
109 |
+
class GemmaRMSNorm(nn.Module):
|
110 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
111 |
+
super().__init__()
|
112 |
+
self.eps = eps
|
113 |
+
self.weight = nn.Parameter(torch.zeros(dim))
|
114 |
|
115 |
+
def _norm(self, x):
|
116 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
117 |
|
118 |
+
def forward(self, x):
|
119 |
+
output = self._norm(x.float())
|
120 |
+
# Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
|
121 |
+
# See https://github.com/huggingface/transformers/pull/29402
|
122 |
+
output = output * (1.0 + self.weight.float())
|
123 |
+
return output.type_as(x)
|
124 |
|
125 |
+
def extra_repr(self):
|
126 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
|
129 |
ALL_LAYERNORM_LAYERS.append(GemmaRMSNorm)
|
|
|
136 |
self.dim = dim
|
137 |
self.max_position_embeddings = max_position_embeddings
|
138 |
self.base = base
|
139 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
|
140 |
+
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
|
141 |
|
142 |
@torch.no_grad()
|
143 |
def forward(self, x, position_ids, seq_len=None):
|
144 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
145 |
+
self.inv_freq.to(x.device)
|
146 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
position_ids_expanded = position_ids[:, None, :].float()
|
148 |
# Force float32 since bfloat16 loses precision on long contexts
|
149 |
# See https://github.com/huggingface/transformers/pull/29285
|
150 |
device_type = x.device.type
|
151 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
|
|
|
|
|
|
|
152 |
with torch.autocast(device_type=device_type, enabled=False):
|
153 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
|
|
|
154 |
emb = torch.cat((freqs, freqs), dim=-1)
|
155 |
cos = emb.cos()
|
156 |
sin = emb.sin()
|
157 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
158 |
|
159 |
|
160 |
+
class GemmaMLP(nn.Module):
|
161 |
+
def __init__(self, config):
|
162 |
+
super().__init__()
|
163 |
+
self.config = config
|
164 |
+
self.hidden_size = config.hidden_size
|
165 |
+
self.intermediate_size = config.intermediate_size
|
166 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
167 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
168 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
169 |
+
if config.hidden_activation is None:
|
170 |
+
logger.warning_once(
|
171 |
+
"`config.hidden_act` is ignored, you should use `config.hidden_activation` instead.\n"
|
172 |
+
"Gemma's activation function will be set to `gelu_pytorch_tanh`. Please, use\n"
|
173 |
+
"`config.hidden_activation` if you want to override this behaviour.\n"
|
174 |
+
"See https://github.com/huggingface/transformers/pull/29402 for more details."
|
175 |
+
)
|
176 |
+
config.hidden_activation = "gelu_pytorch_tanh"
|
177 |
+
hidden_activation = config.hidden_activation
|
178 |
+
self.act_fn = ACT2FN[hidden_activation]
|
179 |
+
|
180 |
+
def forward(self, x):
|
181 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
182 |
+
|
183 |
+
|
184 |
+
class GemmaLinearScalingRotaryEmbedding(GemmaRotaryEmbedding):
|
185 |
+
"""GemmaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
186 |
+
|
187 |
+
def forward(self, x, position_ids):
|
188 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
189 |
+
position_ids = position_ids.float() / self.scaling_factor
|
190 |
+
cos, sin = super().forward(x, position_ids)
|
191 |
+
return cos, sin
|
192 |
+
|
193 |
+
|
194 |
+
class GemmaDynamicNTKScalingRotaryEmbedding(GemmaRotaryEmbedding):
|
195 |
+
"""GemmaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
196 |
+
|
197 |
+
def forward(self, x, position_ids):
|
198 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
199 |
+
seq_len = torch.max(position_ids) + 1
|
200 |
+
if seq_len > self.max_position_embeddings:
|
201 |
+
base = self.base * (
|
202 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
203 |
+
) ** (self.dim / (self.dim - 2))
|
204 |
+
inv_freq = 1.0 / (
|
205 |
+
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
|
206 |
+
)
|
207 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
208 |
+
|
209 |
+
cos, sin = super().forward(x, position_ids)
|
210 |
+
return cos, sin
|
211 |
+
|
212 |
+
|
213 |
def rotate_half(x):
|
214 |
"""Rotates half the hidden dims of the input."""
|
215 |
x1 = x[..., : x.shape[-1] // 2]
|
|
|
217 |
return torch.cat((-x2, x1), dim=-1)
|
218 |
|
219 |
|
|
|
220 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
221 |
"""Applies Rotary Position Embedding to the query and key tensors.
|
222 |
|
|
|
244 |
return q_embed, k_embed
|
245 |
|
246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
248 |
"""
|
249 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
|
252 |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
253 |
if n_rep == 1:
|
254 |
return hidden_states
|
255 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
|
|
|
256 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
257 |
|
258 |
|
259 |
class GemmaAttention(nn.Module):
|
260 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
261 |
|
|
|
262 |
def __init__(self, config: GemmaConfig, layer_idx: Optional[int] = None):
|
263 |
super().__init__()
|
264 |
self.config = config
|
|
|
279 |
self.max_position_embeddings = config.max_position_embeddings
|
280 |
self.rope_theta = config.rope_theta
|
281 |
self.is_causal = True
|
282 |
+
self.scaling = 1 / math.sqrt(config.head_dim)
|
283 |
|
284 |
if self.hidden_size % self.num_heads != 0:
|
285 |
raise ValueError(
|
|
|
287 |
f" and `num_heads`: {self.num_heads})."
|
288 |
)
|
289 |
|
290 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
291 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
292 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
293 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
self.rotary_emb = GemmaRotaryEmbedding(
|
295 |
self.head_dim,
|
296 |
max_position_embeddings=self.max_position_embeddings,
|
|
|
306 |
output_attentions: bool = False,
|
307 |
use_cache: bool = False,
|
308 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
309 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
310 |
bsz, q_len, _ = hidden_states.size()
|
311 |
|
|
|
313 |
key_states = self.k_proj(hidden_states)
|
314 |
value_states = self.v_proj(hidden_states)
|
315 |
|
316 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
317 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
318 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
319 |
+
|
320 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
321 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
if past_key_value is not None:
|
324 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
325 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
326 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
327 |
|
328 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
329 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
330 |
|
331 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
|
|
|
|
|
332 |
|
333 |
if attention_mask is not None: # no matter the length, we just slice it
|
334 |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
335 |
attn_weights = attn_weights + causal_mask
|
336 |
|
337 |
# upcast attention to fp32
|
338 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
339 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
|
|
|
|
|
|
|
|
340 |
attn_output = torch.matmul(attn_weights, value_states)
|
341 |
|
342 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
|
356 |
return attn_output, attn_weights, past_key_value
|
357 |
|
358 |
|
|
|
359 |
class GemmaFlashAttention2(GemmaAttention):
|
360 |
"""
|
361 |
Gemma flash attention module. This module inherits from `GemmaAttention` as the weights of the module stays
|
|
|
371 |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
372 |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
373 |
|
|
|
374 |
def forward(
|
375 |
self,
|
376 |
hidden_states: torch.Tensor,
|
|
|
380 |
output_attentions: bool = False,
|
381 |
use_cache: bool = False,
|
382 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
383 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
384 |
+
if isinstance(past_key_value, StaticCache):
|
385 |
+
raise ValueError(
|
386 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
387 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
388 |
+
)
|
389 |
+
|
390 |
output_attentions = False
|
391 |
|
392 |
bsz, q_len, _ = hidden_states.size()
|
|
|
398 |
# Flash attention requires the input to have the shape
|
399 |
# batch_size x seq_length x head_dim x hidden_dim
|
400 |
# therefore we just need to keep the original shape
|
401 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
402 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
403 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
|
405 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
406 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
407 |
|
408 |
if past_key_value is not None:
|
409 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
410 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
411 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
412 |
|
413 |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
414 |
# to be able to avoid many of these transpose/reshape/view.
|
|
|
444 |
key_states = key_states.to(target_dtype)
|
445 |
value_states = value_states.to(target_dtype)
|
446 |
|
447 |
+
attn_output = _flash_attention_forward(
|
448 |
query_states,
|
449 |
key_states,
|
450 |
value_states,
|
451 |
attention_mask,
|
452 |
q_len,
|
453 |
+
position_ids=position_ids,
|
454 |
dropout=dropout_rate,
|
455 |
+
sliding_window=getattr(self, "sliding_window", None),
|
456 |
+
is_causal=self.is_causal,
|
457 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
458 |
)
|
459 |
|
460 |
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
|
|
465 |
|
466 |
return attn_output, attn_weights, past_key_value
|
467 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
469 |
class GemmaSdpaAttention(GemmaAttention):
|
470 |
"""
|
471 |
Gemma attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
|
|
473 |
SDPA API.
|
474 |
"""
|
475 |
|
476 |
+
# Adapted from GemmaAttention.forward
|
477 |
def forward(
|
478 |
self,
|
479 |
hidden_states: torch.Tensor,
|
|
|
483 |
output_attentions: bool = False,
|
484 |
use_cache: bool = False,
|
485 |
cache_position: Optional[torch.LongTensor] = None,
|
486 |
+
**kwargs,
|
487 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
488 |
if output_attentions:
|
489 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
|
|
507 |
key_states = self.k_proj(hidden_states)
|
508 |
value_states = self.v_proj(hidden_states)
|
509 |
|
510 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
511 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
512 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
|
514 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
515 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
516 |
|
517 |
if past_key_value is not None:
|
518 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
519 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
520 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
521 |
|
522 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
523 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
533 |
key_states = key_states.contiguous()
|
534 |
value_states = value_states.contiguous()
|
535 |
|
536 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
537 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
538 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
539 |
+
|
540 |
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
541 |
query_states,
|
542 |
key_states,
|
543 |
value_states,
|
544 |
attn_mask=causal_mask,
|
545 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
546 |
+
is_causal=is_causal,
|
547 |
)
|
548 |
|
549 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
561 |
}
|
562 |
|
563 |
|
|
|
564 |
class GemmaDecoderLayer(nn.Module):
|
565 |
def __init__(self, config: GemmaConfig, layer_idx: int):
|
566 |
super().__init__()
|
567 |
self.hidden_size = config.hidden_size
|
568 |
|
569 |
+
self.self_attn = GEMMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
|
|
|
|
570 |
|
571 |
self.mlp = GemmaMLP(config)
|
572 |
self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
573 |
+
self.post_attention_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
|
574 |
|
575 |
def forward(
|
576 |
self,
|
577 |
hidden_states: torch.Tensor,
|
578 |
attention_mask: Optional[torch.Tensor] = None,
|
579 |
position_ids: Optional[torch.LongTensor] = None,
|
580 |
+
past_key_value: Optional[Cache] = None,
|
581 |
output_attentions: Optional[bool] = False,
|
582 |
use_cache: Optional[bool] = False,
|
583 |
cache_position: Optional[torch.LongTensor] = None,
|
584 |
**kwargs,
|
585 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
|
|
|
586 |
"""
|
587 |
Args:
|
588 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
|
596 |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
597 |
(see `past_key_values`).
|
598 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
599 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
600 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
601 |
+
kwargs (`dict`, *optional*):
|
602 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
603 |
+
into the model
|
604 |
"""
|
|
|
|
|
|
|
|
|
|
|
605 |
residual = hidden_states
|
606 |
|
607 |
hidden_states = self.input_layernorm(hidden_states)
|
|
|
661 |
config_class = GemmaConfig
|
662 |
base_model_prefix = "model"
|
663 |
supports_gradient_checkpointing = True
|
|
|
664 |
_no_split_modules = ["GemmaDecoderLayer"]
|
665 |
+
_skip_keys_device_placement = ["past_key_values"]
|
666 |
_supports_flash_attn_2 = True
|
667 |
_supports_sdpa = True
|
668 |
_supports_cache_class = True
|
669 |
+
_supports_quantized_cache = True
|
670 |
+
_supports_static_cache = True
|
671 |
|
672 |
def _init_weights(self, module):
|
673 |
std = self.config.initializer_range
|
|
|
680 |
if module.padding_idx is not None:
|
681 |
module.weight.data[module.padding_idx].zero_()
|
682 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
683 |
|
684 |
+
_CONFIG_FOR_DOC = "GemmaConfig"
|
|
|
|
|
685 |
|
686 |
|
687 |
GEMMA_INPUTS_DOCSTRING = r"""
|
|
|
762 |
"The bare Gemma Model outputting raw hidden-states without any specific head on top.",
|
763 |
GEMMA_START_DOCSTRING,
|
764 |
)
|
|
|
765 |
class GemmaModel(GemmaPreTrainedModel):
|
766 |
"""
|
767 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`]
|
|
|
775 |
self.padding_idx = config.pad_token_id
|
776 |
self.vocab_size = config.vocab_size
|
777 |
|
778 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
|
|
|
779 |
self.layers = nn.ModuleList(
|
780 |
+
[GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
|
|
|
|
|
781 |
)
|
782 |
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
783 |
self.gradient_checkpointing = False
|
|
|
792 |
self.embed_tokens = value
|
793 |
|
794 |
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
|
|
795 |
def forward(
|
796 |
self,
|
797 |
input_ids: torch.LongTensor = None,
|
798 |
attention_mask: Optional[torch.Tensor] = None,
|
799 |
position_ids: Optional[torch.LongTensor] = None,
|
800 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
801 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
802 |
use_cache: Optional[bool] = None,
|
803 |
output_attentions: Optional[bool] = None,
|
|
|
805 |
return_dict: Optional[bool] = None,
|
806 |
cache_position: Optional[torch.LongTensor] = None,
|
807 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
808 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
|
|
|
|
|
809 |
output_hidden_states = (
|
810 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
|
811 |
)
|
812 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
813 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
814 |
|
815 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
816 |
raise ValueError(
|
|
|
826 |
if inputs_embeds is None:
|
827 |
inputs_embeds = self.embed_tokens(input_ids)
|
828 |
|
829 |
+
return_legacy_cache = False # noqa: F841
|
830 |
+
if (
|
831 |
+
use_cache and not isinstance(past_key_values, Cache) and not self.training
|
832 |
+
): # kept for BC (non `Cache` `past_key_values` inputs)
|
833 |
+
return_legacy_cache = True # noqa: F841
|
834 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
835 |
|
836 |
if cache_position is None:
|
837 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
838 |
cache_position = torch.arange(
|
839 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
|
|
|
840 |
)
|
841 |
|
842 |
if position_ids is None:
|
843 |
position_ids = cache_position.unsqueeze(0)
|
844 |
|
845 |
causal_mask = self._update_causal_mask(
|
846 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
847 |
)
|
848 |
|
849 |
# embed positions
|
|
|
852 |
# normalized
|
853 |
# Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
|
854 |
# See https://github.com/huggingface/transformers/pull/29402
|
855 |
+
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
|
|
|
|
|
856 |
hidden_states = hidden_states * normalizer
|
857 |
+
if (
|
858 |
+
use_cache and not isinstance(past_key_values, Cache) and not self.training
|
859 |
+
): # kept for BC (non `Cache` `past_key_values` inputs)
|
860 |
+
return_legacy_cache = True
|
861 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
862 |
+
logger.warning_once(
|
863 |
+
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
864 |
+
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
865 |
+
)
|
866 |
|
867 |
# decoder layers
|
868 |
all_hidden_states = () if output_hidden_states else None
|
|
|
909 |
if output_hidden_states:
|
910 |
all_hidden_states += (hidden_states,)
|
911 |
|
912 |
+
next_cache = next_decoder_cache if use_cache else None
|
913 |
+
if return_legacy_cache:
|
914 |
+
next_cache = next_cache.to_legacy_cache()
|
915 |
+
|
|
|
|
|
|
|
916 |
if not return_dict:
|
917 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
|
|
|
|
|
|
|
918 |
return BaseModelOutputWithPast(
|
919 |
last_hidden_state=hidden_states,
|
920 |
past_key_values=next_cache,
|
|
|
927 |
attention_mask: torch.Tensor,
|
928 |
input_tensor: torch.Tensor,
|
929 |
cache_position: torch.Tensor,
|
930 |
+
past_key_values: Cache,
|
931 |
+
output_attentions: bool,
|
932 |
):
|
933 |
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
934 |
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
|
|
940 |
return attention_mask
|
941 |
return None
|
942 |
|
943 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
944 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
945 |
+
# to infer the attention mask.
|
946 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
947 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
948 |
+
|
949 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
950 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
951 |
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
952 |
attention_mask,
|
953 |
inputs_embeds=input_tensor,
|
954 |
past_key_values_length=past_seen_tokens,
|
955 |
+
is_training=self.training,
|
956 |
):
|
957 |
return None
|
958 |
|
959 |
dtype, device = input_tensor.dtype, input_tensor.device
|
960 |
min_dtype = torch.finfo(dtype).min
|
961 |
sequence_length = input_tensor.shape[1]
|
962 |
+
if using_static_cache:
|
963 |
+
target_length = past_key_values.get_max_length()
|
964 |
+
else:
|
|
|
|
|
965 |
target_length = (
|
966 |
attention_mask.shape[-1]
|
967 |
if isinstance(attention_mask, torch.Tensor)
|
968 |
else past_seen_tokens + sequence_length + 1
|
969 |
)
|
970 |
|
971 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
972 |
+
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
973 |
+
attention_mask,
|
974 |
+
sequence_length=sequence_length,
|
975 |
+
target_length=target_length,
|
976 |
dtype=dtype,
|
977 |
device=device,
|
978 |
+
min_dtype=min_dtype,
|
979 |
+
cache_position=cache_position,
|
980 |
+
batch_size=input_tensor.shape[0],
|
981 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
982 |
if (
|
983 |
self.config._attn_implementation == "sdpa"
|
984 |
and attention_mask is not None
|
985 |
and attention_mask.device.type == "cuda"
|
986 |
+
and not output_attentions
|
987 |
):
|
988 |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
989 |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
990 |
# Details: https://github.com/pytorch/pytorch/issues/110213
|
991 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
|
|
|
|
992 |
|
993 |
return causal_mask
|
994 |
|
995 |
|
|
|
996 |
class GemmaForCausalLM(GemmaPreTrainedModel):
|
997 |
_tied_weights_keys = ["lm_head.weight"]
|
998 |
|
|
|
1023 |
def get_decoder(self):
|
1024 |
return self.model
|
1025 |
|
|
|
1026 |
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
1027 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
|
|
|
1028 |
def forward(
|
1029 |
self,
|
1030 |
input_ids: torch.LongTensor = None,
|
1031 |
attention_mask: Optional[torch.Tensor] = None,
|
1032 |
position_ids: Optional[torch.LongTensor] = None,
|
1033 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1034 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1035 |
labels: Optional[torch.LongTensor] = None,
|
1036 |
use_cache: Optional[bool] = None,
|
|
|
1064 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1065 |
"What is your favorite condiment?"
|
1066 |
```"""
|
1067 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
|
|
|
|
|
1068 |
output_hidden_states = (
|
1069 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
|
|
|
|
|
|
|
1070 |
)
|
1071 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1072 |
|
1073 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1074 |
outputs = self.model(
|
|
|
1119 |
attention_mask=None,
|
1120 |
inputs_embeds=None,
|
1121 |
cache_position=None,
|
1122 |
+
position_ids=None,
|
1123 |
+
use_cache=True,
|
1124 |
**kwargs,
|
1125 |
):
|
1126 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1127 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1128 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1129 |
if past_key_values is not None:
|
1130 |
+
if inputs_embeds is not None: # Exception 1
|
1131 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
1132 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1133 |
+
input_ids = input_ids[:, cache_position]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1134 |
|
|
|
1135 |
if attention_mask is not None and position_ids is None:
|
1136 |
# create position_ids on the fly for batch generation
|
1137 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
1138 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
1139 |
if past_key_values:
|
1140 |
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1141 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
1142 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
1143 |
|
1144 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1145 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
1146 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
1147 |
else:
|
1148 |
+
# The clone here is for the same reason as for `position_ids`.
|
1149 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
|
|
|
|
1150 |
|
1151 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
1152 |
+
if model_inputs["inputs_embeds"] is not None:
|
1153 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
1154 |
+
device = model_inputs["inputs_embeds"].device
|
1155 |
+
else:
|
1156 |
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
1157 |
+
device = model_inputs["input_ids"].device
|
|
|
|
|
1158 |
|
1159 |
+
dtype = self.lm_head.weight.dtype
|
1160 |
+
min_dtype = torch.finfo(dtype).min
|
1161 |
+
|
1162 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1163 |
+
attention_mask,
|
1164 |
+
sequence_length=sequence_length,
|
1165 |
+
target_length=past_key_values.get_max_length(),
|
1166 |
+
dtype=dtype,
|
1167 |
+
device=device,
|
1168 |
+
min_dtype=min_dtype,
|
1169 |
+
cache_position=cache_position,
|
1170 |
+
batch_size=batch_size,
|
1171 |
+
)
|
1172 |
|
1173 |
model_inputs.update(
|
1174 |
{
|
1175 |
"position_ids": position_ids,
|
1176 |
"cache_position": cache_position,
|
1177 |
"past_key_values": past_key_values,
|
1178 |
+
"use_cache": use_cache,
|
1179 |
"attention_mask": attention_mask,
|
1180 |
}
|
1181 |
)
|
1182 |
return model_inputs
|
1183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1184 |
|
1185 |
@add_start_docstrings(
|
1186 |
"""
|
|
|
1197 |
""",
|
1198 |
GEMMA_START_DOCSTRING,
|
1199 |
)
|
|
|
1200 |
class GemmaForSequenceClassification(GemmaPreTrainedModel):
|
1201 |
def __init__(self, config):
|
1202 |
super().__init__(config)
|
|
|
1219 |
input_ids: torch.LongTensor = None,
|
1220 |
attention_mask: Optional[torch.Tensor] = None,
|
1221 |
position_ids: Optional[torch.LongTensor] = None,
|
1222 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1223 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1224 |
labels: Optional[torch.LongTensor] = None,
|
1225 |
use_cache: Optional[bool] = None,
|
|
|
1233 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1234 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1235 |
"""
|
1236 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
1237 |
|
1238 |
transformer_outputs = self.model(
|
1239 |
input_ids,
|
|
|
1255 |
batch_size = inputs_embeds.shape[0]
|
1256 |
|
1257 |
if self.config.pad_token_id is None and batch_size != 1:
|
1258 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
|
|
|
1259 |
if self.config.pad_token_id is None:
|
1260 |
sequence_lengths = -1
|
1261 |
else:
|
1262 |
if input_ids is not None:
|
1263 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1264 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
|
|
|
|
1265 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1266 |
sequence_lengths = sequence_lengths.to(logits.device)
|
1267 |
else:
|
1268 |
sequence_lengths = -1
|
1269 |
|
1270 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
|
1271 |
|
1272 |
loss = None
|
1273 |
if labels is not None:
|
|
|
1275 |
if self.config.problem_type is None:
|
1276 |
if self.num_labels == 1:
|
1277 |
self.config.problem_type = "regression"
|
1278 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
|
|
|
1279 |
self.config.problem_type = "single_label_classification"
|
1280 |
else:
|
1281 |
self.config.problem_type = "multi_label_classification"
|
|
|
1288 |
loss = loss_fct(pooled_logits, labels)
|
1289 |
elif self.config.problem_type == "single_label_classification":
|
1290 |
loss_fct = CrossEntropyLoss()
|
1291 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
|
1292 |
elif self.config.problem_type == "multi_label_classification":
|
1293 |
loss_fct = BCEWithLogitsLoss()
|
1294 |
loss = loss_fct(pooled_logits, labels)
|
|
|
1303 |
hidden_states=transformer_outputs.hidden_states,
|
1304 |
attentions=transformer_outputs.attentions,
|
1305 |
)
|
1306 |
+
|
1307 |
+
|
1308 |
+
@add_start_docstrings(
|
1309 |
+
"""
|
1310 |
+
The Gemma Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1311 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1312 |
+
""",
|
1313 |
+
GEMMA_START_DOCSTRING,
|
1314 |
+
)
|
1315 |
+
class GemmaForTokenClassification(GemmaPreTrainedModel):
|
1316 |
+
def __init__(self, config):
|
1317 |
+
super().__init__(config)
|
1318 |
+
self.num_labels = config.num_labels
|
1319 |
+
self.model = GemmaModel(config)
|
1320 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1321 |
+
classifier_dropout = config.classifier_dropout
|
1322 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1323 |
+
classifier_dropout = config.hidden_dropout
|
1324 |
+
else:
|
1325 |
+
classifier_dropout = 0.1
|
1326 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1327 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1328 |
+
|
1329 |
+
# Initialize weights and apply final processing
|
1330 |
+
self.post_init()
|
1331 |
+
|
1332 |
+
def get_input_embeddings(self):
|
1333 |
+
return self.model.embed_tokens
|
1334 |
+
|
1335 |
+
def set_input_embeddings(self, value):
|
1336 |
+
self.model.embed_tokens = value
|
1337 |
+
|
1338 |
+
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
1339 |
+
def forward(
|
1340 |
+
self,
|
1341 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1342 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1343 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1344 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1345 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1346 |
+
labels: Optional[torch.LongTensor] = None,
|
1347 |
+
use_cache: Optional[bool] = None,
|
1348 |
+
output_attentions: Optional[bool] = None,
|
1349 |
+
output_hidden_states: Optional[bool] = None,
|
1350 |
+
return_dict: Optional[bool] = None,
|
1351 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1352 |
+
r"""
|
1353 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1354 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1355 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1356 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1357 |
+
"""
|
1358 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1359 |
+
|
1360 |
+
outputs = self.model(
|
1361 |
+
input_ids,
|
1362 |
+
attention_mask=attention_mask,
|
1363 |
+
position_ids=position_ids,
|
1364 |
+
past_key_values=past_key_values,
|
1365 |
+
inputs_embeds=inputs_embeds,
|
1366 |
+
use_cache=use_cache,
|
1367 |
+
output_attentions=output_attentions,
|
1368 |
+
output_hidden_states=output_hidden_states,
|
1369 |
+
return_dict=return_dict,
|
1370 |
+
)
|
1371 |
+
sequence_output = outputs[0]
|
1372 |
+
sequence_output = self.dropout(sequence_output)
|
1373 |
+
logits = self.score(sequence_output)
|
1374 |
+
|
1375 |
+
loss = None
|
1376 |
+
if labels is not None:
|
1377 |
+
loss_fct = CrossEntropyLoss()
|
1378 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1379 |
+
|
1380 |
+
if not return_dict:
|
1381 |
+
output = (logits,) + outputs[2:]
|
1382 |
+
return ((loss,) + output) if loss is not None else output
|
1383 |
+
|
1384 |
+
return TokenClassifierOutput(
|
1385 |
+
loss=loss,
|
1386 |
+
logits=logits,
|
1387 |
+
hidden_states=outputs.hidden_states,
|
1388 |
+
attentions=outputs.attentions,
|
1389 |
+
)
|