Improve model card: Add prominent GitHub link and sample usage
Browse filesThis PR improves the model card for SLM-SQL by:
- Adding a prominent link to the GitHub repository (`https://github.com/CycloneBoy/slm_sql`) in the "Important Links" section, making it easier for users to find the code.
- Incorporating a clear sample usage example to demonstrate how to load and run the model using the `transformers` library, which significantly enhances user accessibility.
README.md
CHANGED
|
@@ -1,19 +1,18 @@
|
|
| 1 |
---
|
| 2 |
-
pipeline_tag: text-generation
|
| 3 |
library_name: transformers
|
| 4 |
license: cc-by-nc-4.0
|
|
|
|
| 5 |
tags:
|
| 6 |
- text-to-sql
|
| 7 |
- reinforcement-learning
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
| 11 |
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
|
| 12 |
|
| 13 |
### Important Links
|
| 14 |
|
| 15 |
-
π[Arxiv Paper](https://arxiv.org/abs/2507.22478) |
|
| 16 |
-
π€[HuggingFace](https://huggingface.co/collections/cycloneboy/slm-sql-688b02f99f958d7a417658dc) |
|
| 17 |
π€[ModelScope](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
|
| 18 |
|
| 19 |
## News
|
|
@@ -55,6 +54,33 @@ Performance Comparison of different Text-to-SQL methods on BIRD dev and test dat
|
|
| 55 |
|
| 56 |
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_ablation_study.png" height="300" alt="slmsql_ablation_study">
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
## Model
|
| 59 |
|
| 60 |
| **Model** | Base Model | Train Method | Modelscope | HuggingFace |
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
license: cc-by-nc-4.0
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
tags:
|
| 6 |
- text-to-sql
|
| 7 |
- reinforcement-learning
|
| 8 |
---
|
| 9 |
|
|
|
|
| 10 |
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
|
| 11 |
|
| 12 |
### Important Links
|
| 13 |
|
| 14 |
+
π[Arxiv Paper](https://arxiv.org/abs/2507.22478) | πΎ[GitHub](https://github.com/CycloneBoy/slm_sql) |
|
| 15 |
+
π€[HuggingFace Collection](https://huggingface.co/collections/cycloneboy/slm-sql-688b02f99f958d7a417658dc) |
|
| 16 |
π€[ModelScope](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
|
| 17 |
|
| 18 |
## News
|
|
|
|
| 54 |
|
| 55 |
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_ablation_study.png" height="300" alt="slmsql_ablation_study">
|
| 56 |
|
| 57 |
+
## Sample Usage
|
| 58 |
+
|
| 59 |
+
You can use the model with the `transformers` library. Here's an example:
|
| 60 |
+
|
| 61 |
+
```python
|
| 62 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 63 |
+
import torch
|
| 64 |
+
|
| 65 |
+
# Load the tokenizer and model (e.g., SLM-SQL-1.5B)
|
| 66 |
+
model_name = "cycloneboy/SLM-SQL-1.5B" # Adjust this to the specific model you want to use
|
| 67 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 68 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 69 |
+
|
| 70 |
+
# Define the input prompt (natural language question for SQL)
|
| 71 |
+
prompt = "what are the names of all employees?"
|
| 72 |
+
|
| 73 |
+
# Prepare the input for the model
|
| 74 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
| 75 |
+
|
| 76 |
+
# Generate the SQL query
|
| 77 |
+
output_ids = model.generate(input_ids, max_new_tokens=100, num_beams=1, do_sample=False)
|
| 78 |
+
generated_sql = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 79 |
+
|
| 80 |
+
print("Generated SQL Query:")
|
| 81 |
+
print(generated_sql)
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
## Model
|
| 85 |
|
| 86 |
| **Model** | Base Model | Train Method | Modelscope | HuggingFace |
|