File size: 2,573 Bytes
41ce099
 
 
 
 
 
8d08ec6
 
41ce099
 
 
 
 
 
 
 
 
 
 
8d08ec6
 
 
41ce099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d08ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ce099
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-base-patch4-window7-224_rice-leaf-disease-augmented-v2_fft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-base-patch4-window7-224_rice-leaf-disease-augmented-v2_fft

This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4238
- Accuracy: 0.9345

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7682        | 1.0   | 125  | 1.0104          | 0.7083   |
| 0.5426        | 2.0   | 250  | 0.4423          | 0.8571   |
| 0.1598        | 3.0   | 375  | 0.3282          | 0.8810   |
| 0.0529        | 4.0   | 500  | 0.3018          | 0.9137   |
| 0.0216        | 5.0   | 625  | 0.2928          | 0.9226   |
| 0.0135        | 6.0   | 750  | 0.2874          | 0.9286   |
| 0.0135        | 7.0   | 875  | 0.3382          | 0.9137   |
| 0.0082        | 8.0   | 1000 | 0.3456          | 0.9226   |
| 0.0039        | 9.0   | 1125 | 0.3589          | 0.9256   |
| 0.0025        | 10.0  | 1250 | 0.3539          | 0.9315   |
| 0.0038        | 11.0  | 1375 | 0.4166          | 0.9196   |
| 0.004         | 12.0  | 1500 | 0.4284          | 0.9286   |
| 0.0022        | 13.0  | 1625 | 0.4279          | 0.9345   |
| 0.001         | 14.0  | 1750 | 0.4176          | 0.9345   |
| 0.0014        | 15.0  | 1875 | 0.4238          | 0.9345   |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0