File size: 2,538 Bytes
0ed623d aa0aa34 0ed623d aa0aa34 0ed623d aa0aa34 0ed623d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
library_name: transformers
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224_rice-leaf-disease-augmented-v2_fft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beit-base-patch16-224_rice-leaf-disease-augmented-v2_fft
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5324
- Accuracy: 0.9137
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6553 | 1.0 | 125 | 0.7916 | 0.7530 |
| 0.481 | 2.0 | 250 | 0.3628 | 0.8810 |
| 0.1631 | 3.0 | 375 | 0.2895 | 0.8988 |
| 0.0609 | 4.0 | 500 | 0.3242 | 0.9167 |
| 0.0293 | 5.0 | 625 | 0.3503 | 0.9196 |
| 0.0223 | 6.0 | 750 | 0.3411 | 0.9226 |
| 0.0302 | 7.0 | 875 | 0.3786 | 0.9226 |
| 0.014 | 8.0 | 1000 | 0.4169 | 0.9256 |
| 0.0069 | 9.0 | 1125 | 0.4648 | 0.9137 |
| 0.006 | 10.0 | 1250 | 0.4697 | 0.9137 |
| 0.0053 | 11.0 | 1375 | 0.5192 | 0.8958 |
| 0.0093 | 12.0 | 1500 | 0.5058 | 0.9048 |
| 0.0069 | 13.0 | 1625 | 0.5486 | 0.9077 |
| 0.005 | 14.0 | 1750 | 0.5252 | 0.9167 |
| 0.004 | 15.0 | 1875 | 0.5324 | 0.9137 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|