Meldaa commited on
Commit
a4bc2da
·
verified ·
1 Parent(s): 4350ed5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -0
README.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - cs
4
+ base_model:
5
+ - fav-kky/FERNET-C5
6
+ ---
7
+
8
+ This is fav-kky/FERNET-C5, fine-tuned with the **Cross-Encoder** architecture on the Czech News Dataset for Semantic Textual Similarity and DaReCzech. The Cross-Encoder architecture processes both input text pieces simultaneously, enabling better accuracy.
9
+
10
+ The model can be used both for Semantic Textual Similarity and re-ranking.
11
+
12
+ **Semantic Textual Similarity**: The model takes two input sentences and evaluates how similar their meanings are.
13
+
14
+ ```python
15
+ from sentence_transformers import CrossEncoder
16
+
17
+ model = CrossEncoder('ctu-aic/CE-fernet-c5-sfle256 ', max_length=256)
18
+
19
+ scores = model.predict([["sentence_1", "sentence_2"]])
20
+ print(scores)
21
+
22
+ ```
23
+
24
+ **Re-ranking task**: Given a query, the model assesses all potential passages and ranks them in descending order of relevance.
25
+
26
+
27
+ ```python
28
+ from sentence_transformers import CrossEncoder
29
+
30
+ model = CrossEncoder('ctu-aic/CE-fernet-c5-sfle256 ', max_length=256)
31
+
32
+ query = "Example query for."
33
+
34
+ documents = [
35
+ "Example document one.",
36
+ "Example document two.",
37
+ "Example document three."
38
+ ]
39
+
40
+ top_k = 3
41
+ return_documents = True
42
+
43
+ results = model.rank(
44
+ query=query,
45
+ documents=documents,
46
+ top_k=top_k,
47
+ return_documents=return_documents
48
+ )
49
+
50
+ for i, res in enumerate(results):
51
+ print(f"{i+1}. {res['text']}")
52
+ ```