File size: 4,927 Bytes
fdae256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
license: apache-2.0
pipeline_tag: image-segmentation
tags:
- medical
- biology
- histology
- histopathology
---

# CPP-Net Model for Cervical Intraepithelial Neoplasia 2 (CIN2) Nuclei Segmentation

# Model
- **cellseg_models.pytorch** implementation of **CPP-Net**: [https://arxiv.org/abs/2102.06867](https://arxiv.org/abs/2102.06867)
- Backbone encoder: pre-trained **efficientnet_b5** from pytorch-image-models [https://github.com/huggingface/pytorch-image-models](https://github.com/huggingface/pytorch-image-models)


# USAGE

## 1. Install cellseg_models.pytorch and albumentations
```
pip install cellseg-models-pytorch
pip install albumentations
```

## 2. Load trained model
```python
from cellseg_models_pytorch.models.cppnet import CPPNet

model = CPPNet.from_pretrained("hgsc_v1_efficientnet_b5")
```

## 3. Run inference for one image
```python
from albumentations import Resize, Compose
from cellseg_models_pytorch.utils import FileHandler
from cellseg_models_pytorch.transforms.albu_transforms import MinMaxNormalization

model.set_inference_mode()

# Resize to multiple of 32 of your own choosing
transform = Compose([Resize(1024, 1024), MinMaxNormalization()])

im = FileHandler.read_img(IMG_PATH)
im = transform(image=im)["image"]

prob = model.predict(im)
out = model.post_process(prob)
# out = {"nuc": [(nuc instances (H, W), nuc types (H, W))], "cyto": None, "tissue": None}
```

## 3.1 Run inference for image batch
```python
import torch
from cellseg_models_pytorch.utils import FileHandler

model.set_inference_mode()

# dont use random matrices IRL
batch = torch.rand(8, 3, 1024, 1024)

prob = model.predict(im)
out = model.post_process(prob)
# out = {
#  "nuc": [
#    (nuc instances (H, W), nuc types (H, W)),
#    (nuc instances (H, W), nuc types (H, W)),
#    .
#    .
#    .
#    (nuc instances (H, W), nuc types (H, W))    
#  ],
#  "cyto": None,
#  "tissue": None
#}
```

## 4. Visualize output
```python
from matplotlib import pyplot as plt
from skimage.color import label2rgb

fig, ax = plt.subplots(1, 3, figsize=(18, 6))
ax[0].imshow(im)
ax[1].imshow(label2rgb(out["nuc"][0][0], bg_label=0)) # inst_map
ax[2].imshow(label2rgb(out["nuc"][0][1], bg_label=0)) # type_map
```
<!-- ![out](cppnet_out.png) -->

## Dataset Details
Semi-manually annotated CIN2 samples from a (private) cohort of Helsinki University Hospital

**Contains:**
- 370 varying sized image crops at 20x magnification.
- 168 640 annotated nuclei

## Dataset classes

```
nuc_classes = {
    0: "background",
    1: "neoplastic",
    2: "inflammatory",
    3: "connective",
    4: "dead",
    5: "glandular_epithelial",
    6: "squamous_epithelial",
}
```

## Dataset Class Distribution

- connective nuclei: 46 222 (~27.3%)
- neoplastic nuclei: 49 493 (~29.4%)
- inflammatory nuclei 27 226 (~16.1%)
- dead nuclei 195 (~0.11%)
- glandular epithelial 14 310 (~8.5%)
- squamous epithelial 31194 (~18.5%)


# Model Training Details:
First, the image crops in the training data were tiled into 224x224px patches with a sliding window (stride=32px). 

Rest of the training procedures follow this notebook: [link]

# Citation

cellseg_models.pytorch:
```
@misc{https://doi.org/10.5281/zenodo.12666959,
  doi = {10.5281/ZENODO.12666959},
  url = {https://zenodo.org/doi/10.5281/zenodo.12666959},
  author = {Okunator,  },
  title = {okunator/cellseg_models.pytorch: v0.2.0},
  publisher = {Zenodo},
  year = {2024},
  copyright = {Creative Commons Attribution 4.0 International}
}
```

CPP-Net original paper:
```
@article{https://doi.org/10.48550/arxiv.2102.06867,
  doi = {10.48550/ARXIV.2102.06867},
  url = {https://arxiv.org/abs/2102.06867},
  author = {Chen,  Shengcong and Ding,  Changxing and Liu,  Minfeng and Cheng,  Jun and Tao,  Dacheng},
  keywords = {Computer Vision and Pattern Recognition (cs.CV),  FOS: Computer and information sciences,  FOS: Computer and information sciences},
  title = {CPP-Net: Context-aware Polygon Proposal Network for Nucleus Segmentation},
  publisher = {arXiv},
  year = {2021},
  copyright = {arXiv.org perpetual,  non-exclusive license}
}
```

## Licence
These model weights are released under the Apache License, Version 2.0 (the "License"). You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

## Additional Terms

While the Apache 2.0 License grants broad permissions, we kindly request that users adhere to the following guidelines:
Medical or Clinical Use: This model is not intended for use in medical diagnosis, treatment, or prevention of disease of real patients. It should not be used as a substitute for professional medical advice.