File size: 1,685 Bytes
e966d68
 
 
 
 
 
cf33307
 
e966d68
 
 
 
 
 
 
 
 
 
 
cf33307
 
2efa6c3
 
 
 
3a8ce2b
e966d68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a8ce2b
 
e966d68
3a8ce2b
e966d68
3a8ce2b
 
e966d68
 
3a8ce2b
e966d68
 
 
 
 
2efa6c3
e966d68
 
 
 
 
3a8ce2b
e966d68
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: Flan-T5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Flan-T5

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 5.6994
- Rouge2: 1.2179
- Rougel: 4.4822
- Rougelsum: 4.5267
- Gen Len: 15.7143

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAFACTOR and the args are:
No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.0           | 0.9905 | 26   | nan             | 5.6994 | 1.2179 | 4.4822 | 4.5267    | 15.7143 |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0