Upload model
Browse files- modeling_gzipembed.py +1 -5
modeling_gzipembed.py
CHANGED
@@ -30,7 +30,7 @@ class GZIPEmbeddingModel(PreTrainedModel):
|
|
30 |
ncd = [0] * len(self.config.corpus)
|
31 |
with multiprocessing.Pool(num_procs) as pool:
|
32 |
data = enumerate(self.config.corpus)
|
33 |
-
results = pool.map(calculate_ncd_row,
|
34 |
for i,row in results:
|
35 |
ncd[i]=row
|
36 |
x.append(ncd)
|
@@ -40,10 +40,6 @@ class GZIPEmbeddingModel(PreTrainedModel):
|
|
40 |
return self.reduction_head(x)
|
41 |
return x if not return_tensor else torch.tensor(x)
|
42 |
|
43 |
-
def ncd_r(self,r):
|
44 |
-
i=r[0][0]
|
45 |
-
return i,self.ncd(r[0][1],r[1])
|
46 |
-
|
47 |
def normalize(self, x):
|
48 |
x = ''.join([char for char in x.lower() if char in "abcdefghijklmnopqrstuvwxyz "])
|
49 |
x = word_tokenize(x)
|
|
|
30 |
ncd = [0] * len(self.config.corpus)
|
31 |
with multiprocessing.Pool(num_procs) as pool:
|
32 |
data = enumerate(self.config.corpus)
|
33 |
+
results = pool.map(calculate_ncd_row,data)
|
34 |
for i,row in results:
|
35 |
ncd[i]=row
|
36 |
x.append(ncd)
|
|
|
40 |
return self.reduction_head(x)
|
41 |
return x if not return_tensor else torch.tensor(x)
|
42 |
|
|
|
|
|
|
|
|
|
43 |
def normalize(self, x):
|
44 |
x = ''.join([char for char in x.lower() if char in "abcdefghijklmnopqrstuvwxyz "])
|
45 |
x = word_tokenize(x)
|