Upload model
Browse files- modeling_gzipembed.py +4 -4
modeling_gzipembed.py
CHANGED
@@ -24,7 +24,7 @@ class GZIPEmbeddingModel(PreTrainedModel):
|
|
24 |
ncd = [0] * len(self.config.corpus)
|
25 |
with multiprocessing.Pool(num_procs) as pool:
|
26 |
data = enumerate(self.config.corpus)
|
27 |
-
results = pool.map(self.ncd_r,data)
|
28 |
for i,row in results:
|
29 |
ncd[i]=row
|
30 |
x.append(ncd)
|
@@ -33,10 +33,10 @@ class GZIPEmbeddingModel(PreTrainedModel):
|
|
33 |
x = x.to(self.reduction_head.dtype).to(self.reduction_head.device)
|
34 |
return self.reduction_head(x)
|
35 |
return x if not return_tensor else torch.tensor(x)
|
36 |
-
|
37 |
-
def ncd_r(self,
|
38 |
i=r[0]
|
39 |
-
return i,self.ncd(r[1],
|
40 |
|
41 |
def normalize(self, x):
|
42 |
x = ''.join([char for char in x.lower() if char in "abcdefghijklmnopqrstuvwxyz "])
|
|
|
24 |
ncd = [0] * len(self.config.corpus)
|
25 |
with multiprocessing.Pool(num_procs) as pool:
|
26 |
data = enumerate(self.config.corpus)
|
27 |
+
results = pool.map(self.ncd_r,(data,p))
|
28 |
for i,row in results:
|
29 |
ncd[i]=row
|
30 |
x.append(ncd)
|
|
|
33 |
x = x.to(self.reduction_head.dtype).to(self.reduction_head.device)
|
34 |
return self.reduction_head(x)
|
35 |
return x if not return_tensor else torch.tensor(x)
|
36 |
+
|
37 |
+
def ncd_r(self,rp):
|
38 |
i=r[0]
|
39 |
+
return i,self.ncd(r[1],r[2])
|
40 |
|
41 |
def normalize(self, x):
|
42 |
x = ''.join([char for char in x.lower() if char in "abcdefghijklmnopqrstuvwxyz "])
|