File size: 2,934 Bytes
a0b85cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d238bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---

language: en
pipeline_tag: zero-shot-classification
tags:
- transformers
datasets:
- nyu-mll/multi_nli
- stanfordnlp/snli
metrics:
- accuracy
license: apache-2.0
base_model:
- microsoft/deberta-v3-large
library_name: sentence-transformers
---


# Cross-Encoder for Natural Language Inference
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. This model is based on [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large)

## Training Data
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.

## Performance
- Accuracy on SNLI-test dataset: 92.20
- Accuracy on  MNLI mismatched set: 90.49

For futher evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).

## Usage

Pre-trained models can be used like this:
```python

from sentence_transformers import CrossEncoder

model = CrossEncoder('cross-encoder/nli-deberta-v3-large')

scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])



#Convert scores to labels

label_mapping = ['contradiction', 'entailment', 'neutral']

labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]

```

## Usage with Transformers AutoModel
You can use the model also directly with Transformers library (without SentenceTransformers library):
```python

from transformers import AutoTokenizer, AutoModelForSequenceClassification

import torch



model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-deberta-v3-large')

tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-deberta-v3-large')



features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'],  padding=True, truncation=True, return_tensors="pt")



model.eval()

with torch.no_grad():

    scores = model(**features).logits

    label_mapping = ['contradiction', 'entailment', 'neutral']

    labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]

    print(labels)

```

## Zero-Shot Classification
This model can also be used for zero-shot-classification:
```python

from transformers import pipeline



classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-deberta-v3-large')



sent = "Apple just announced the newest iPhone X"

candidate_labels = ["technology", "sports", "politics"]

res = classifier(sent, candidate_labels)

print(res)

```