import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from lib.optim import * from lib.modules.layers import * from lib.modules.context_module import * from lib.modules.attention_module import * from lib.modules.decoder_module import * from lib.backbones.Res2Net_v1b import res2net50_v1b_26w_4s from lib.backbones.SwinTransformer import SwinB class InSPyReNet(nn.Module): def __init__(self, backbone, in_channels, depth=64, base_size=[384, 384], threshold=512, **kwargs): super(InSPyReNet, self).__init__() self.backbone = backbone self.in_channels = in_channels self.depth = depth self.base_size = base_size self.threshold = threshold self.context1 = PAA_e(self.in_channels[0], self.depth, base_size=self.base_size, stage=0) self.context2 = PAA_e(self.in_channels[1], self.depth, base_size=self.base_size, stage=1) self.context3 = PAA_e(self.in_channels[2], self.depth, base_size=self.base_size, stage=2) self.context4 = PAA_e(self.in_channels[3], self.depth, base_size=self.base_size, stage=3) self.context5 = PAA_e(self.in_channels[4], self.depth, base_size=self.base_size, stage=4) self.decoder = PAA_d(self.depth * 3, depth=self.depth, base_size=base_size, stage=2) self.attention0 = SICA(self.depth , depth=self.depth, base_size=self.base_size, stage=0, lmap_in=True) self.attention1 = SICA(self.depth * 2, depth=self.depth, base_size=self.base_size, stage=1, lmap_in=True) self.attention2 = SICA(self.depth * 2, depth=self.depth, base_size=self.base_size, stage=2 ) self.sod_loss_fn = lambda x, y: weighted_bce_loss_with_logits(x, y, reduction='mean') + iou_loss_with_logits(x, y, reduction='mean') self.pc_loss_fn = nn.L1Loss() self.ret = lambda x, target: F.interpolate(x, size=target.shape[-2:], mode='bilinear', align_corners=False) self.res = lambda x, size: F.interpolate(x, size=size, mode='bilinear', align_corners=False) self.des = lambda x, size: F.interpolate(x, size=size, mode='nearest') self.image_pyramid = ImagePyramid(7, 1) self.transition0 = Transition(17) self.transition1 = Transition(9) self.transition2 = Transition(5) self.forward = self.forward_inference def to(self, device): self.image_pyramid.to(device) self.transition0.to(device) self.transition1.to(device) self.transition2.to(device) super(InSPyReNet, self).to(device) return self def cuda(self, idx=None): if idx is None: idx = torch.cuda.current_device() self.to(device="cuda:{}".format(idx)) return self def train(self, mode=True): super(InSPyReNet, self).train(mode) self.forward = self.forward_train return self def eval(self): super(InSPyReNet, self).train(False) self.forward = self.forward_inference return self def forward_inspyre(self, x): B, _, H, W = x.shape x1, x2, x3, x4, x5 = self.backbone(x) x1 = self.context1(x1) #4 x2 = self.context2(x2) #4 x3 = self.context3(x3) #8 x4 = self.context4(x4) #16 x5 = self.context5(x5) #32 f3, d3 = self.decoder([x3, x4, x5]) #16 f3 = self.res(f3, (H // 4, W // 4 )) f2, p2 = self.attention2(torch.cat([x2, f3], dim=1), d3.detach()) d2 = self.image_pyramid.reconstruct(d3.detach(), p2) #4 x1 = self.res(x1, (H // 2, W // 2)) f2 = self.res(f2, (H // 2, W // 2)) f1, p1 = self.attention1(torch.cat([x1, f2], dim=1), d2.detach(), p2.detach()) #2 d1 = self.image_pyramid.reconstruct(d2.detach(), p1) #2 f1 = self.res(f1, (H, W)) _, p0 = self.attention0(f1, d1.detach(), p1.detach()) #2 d0 = self.image_pyramid.reconstruct(d1.detach(), p0) #2 out = dict() out['saliency'] = [d3, d2, d1, d0] out['laplacian'] = [p2, p1, p0] return out def forward_train(self, sample): x = sample['image'] B, _, H, W = x.shape out = self.forward_inspyre(x) d3, d2, d1, d0 = out['saliency'] p2, p1, p0 = out['laplacian'] if type(sample) == dict and 'gt' in sample.keys() and sample['gt'] is not None: y = sample['gt'] y1 = self.image_pyramid.reduce(y) y2 = self.image_pyramid.reduce(y1) y3 = self.image_pyramid.reduce(y2) loss = self.pc_loss_fn(self.des(d3, (H, W)), self.des(self.image_pyramid.reduce(d2), (H, W)).detach()) * 0.0001 loss += self.pc_loss_fn(self.des(d2, (H, W)), self.des(self.image_pyramid.reduce(d1), (H, W)).detach()) * 0.0001 loss += self.pc_loss_fn(self.des(d1, (H, W)), self.des(self.image_pyramid.reduce(d0), (H, W)).detach()) * 0.0001 loss += self.sod_loss_fn(self.des(d3, (H, W)), self.des(y3, (H, W))) loss += self.sod_loss_fn(self.des(d2, (H, W)), self.des(y2, (H, W))) loss += self.sod_loss_fn(self.des(d1, (H, W)), self.des(y1, (H, W))) loss += self.sod_loss_fn(self.des(d0, (H, W)), self.des(y, (H, W))) else: loss = 0 pred = torch.sigmoid(d0) pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8) sample['pred'] = pred sample['loss'] = loss sample['saliency'] = [d3, d2, d1, d0] sample['laplacian'] = [p2, p1, p0] return sample def forward_inference(self, sample): B, _, H, W = sample['image'].shape if self.threshold is None: out = self.forward_inspyre(sample['image']) d3, d2, d1, d0 = out['saliency'] p2, p1, p0 = out['laplacian'] elif (H <= self.threshold or W <= self.threshold): if 'image_resized' in sample.keys(): out = self.forward_inspyre(sample['image_resized']) else: out = self.forward_inspyre(sample['image']) d3, d2, d1, d0 = out['saliency'] p2, p1, p0 = out['laplacian'] else: # LR Saliency Pyramid lr_out = self.forward_inspyre(sample['image_resized']) lr_d3, lr_d2, lr_d1, lr_d0 = lr_out['saliency'] lr_p2, lr_p1, lr_p0 = lr_out['laplacian'] # HR Saliency Pyramid hr_out = self.forward_inspyre(sample['image']) hr_d3, hr_d2, hr_d1, hr_d0 = hr_out['saliency'] hr_p2, hr_p1, hr_p0 = hr_out['laplacian'] # Pyramid Blending d3 = self.ret(lr_d0, hr_d3) t2 = self.ret(self.transition2(d3), hr_p2) p2 = t2 * hr_p2 d2 = self.image_pyramid.reconstruct(d3, p2) t1 = self.ret(self.transition1(d2), hr_p1) p1 = t1 * hr_p1 d1 = self.image_pyramid.reconstruct(d2, p1) t0 = self.ret(self.transition0(d1), hr_p0) p0 = t0 * hr_p0 d0 = self.image_pyramid.reconstruct(d1, p0) pred = torch.sigmoid(d0) pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8) sample['pred'] = pred sample['loss'] = 0 sample['saliency'] = [d3, d2, d1, d0] sample['laplacian'] = [p2, p1, p0] return sample def InSPyReNet_Res2Net50(depth, pretrained, base_size, **kwargs): return InSPyReNet(res2net50_v1b_26w_4s(pretrained=pretrained), [64, 256, 512, 1024, 2048], depth, base_size, **kwargs) def InSPyReNet_SwinB(depth, pretrained, base_size, **kwargs): return InSPyReNet(SwinB(pretrained=pretrained), [128, 128, 256, 512, 1024], depth, base_size, **kwargs)