import os import sys import tqdm import torch import numpy as np from PIL import Image from torch.utils.data.dataloader import DataLoader filepath = os.path.split(os.path.abspath(__file__))[0] repopath = os.path.split(filepath)[0] sys.path.append(repopath) from lib import * from utils.misc import * from data.dataloader import * torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False def test(opt, args): model = eval(opt.Model.name)(**opt.Model) model.load_state_dict(torch.load(os.path.join(opt.Test.Checkpoint.checkpoint_dir, 'latest.pth')), strict=True) model.cuda() model.eval() if args.verbose is True: sets = tqdm.tqdm(opt.Test.Dataset.sets, desc='Total TestSet', total=len( opt.Test.Dataset.sets), position=0, bar_format='{desc:<30}{percentage:3.0f}%|{bar:50}{r_bar}') else: sets = opt.Test.Dataset.sets for set in sets: save_path = os.path.join(opt.Test.Checkpoint.checkpoint_dir, set) os.makedirs(save_path, exist_ok=True) test_dataset = eval(opt.Test.Dataset.type)(opt.Test.Dataset.root, [set], opt.Test.Dataset.transforms) test_loader = DataLoader(dataset=test_dataset, batch_size=1, num_workers=opt.Test.Dataloader.num_workers, pin_memory=opt.Test.Dataloader.pin_memory) if args.verbose is True: samples = tqdm.tqdm(test_loader, desc=set + ' - Test', total=len(test_loader), position=1, leave=False, bar_format='{desc:<30}{percentage:3.0f}%|{bar:50}{r_bar}') else: samples = test_loader for sample in samples: sample = to_cuda(sample) with torch.no_grad(): out = model(sample) pred = to_numpy(out['pred'], sample['shape']) Image.fromarray((pred * 255).astype(np.uint8)).save(os.path.join(save_path, sample['name'][0] + '.png')) if __name__ == "__main__": args = parse_args() opt = load_config(args.config) test(opt, args)