File size: 28,872 Bytes
f7f604d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
# -*- coding: utf-8 -*-
# @Time : 2021/1/4
# @Author : Lart Pang
# @GitHub : https://github.com/lartpang/PySODMetrics
import numpy as np
from scipy.ndimage import convolve
from scipy.ndimage import distance_transform_edt as bwdist
import cv2
from PIL import Image
_EPS = 1e-16
_TYPE = np.float64
def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple:
"""
A numpy-based function for preparing ``pred`` and ``gt``.
- for ``pred``, it looks like ``mapminmax(im2double(...))`` of matlab;
- ``gt`` will be binarized by 128.
:param pred: prediction
:param gt: mask
:return: pred, gt
"""
gt = gt > 128
pred = pred / 255
if pred.max() != pred.min():
pred = (pred - pred.min()) / (pred.max() - pred.min())
return pred, gt
def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float:
"""
Return an adaptive threshold, which is equal to twice the mean of ``matrix``.
:param matrix: a data array
:param max_value: the upper limit of the threshold
:return: min(2 * matrix.mean(), max_value)
"""
return min(2 * matrix.mean(), max_value)
class IoU(object):
def __init__(self):
self.ious = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
ious = self.cal_iou(pred=pred, gt=gt)
self.ious.append(ious)
def cal_iou(self, pred, gt):
pred = (pred * 255).astype(np.uint8)
bins = np.linspace(0, 256, 257)
fg_hist, _ = np.histogram(pred[gt], bins=bins) # ture positive
bg_hist, _ = np.histogram(pred[~gt], bins=bins) # false positive
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
TPs = fg_w_thrs
Ps = fg_w_thrs + bg_w_thrs # positives
Ps[Ps == 0] = 1
T = max(np.count_nonzero(gt), 1)
ious = TPs / (T + bg_w_thrs)
return ious
def get_results(self) -> dict:
iou = np.mean(np.array(self.ious, dtype=_TYPE), axis=0)
return dict(iou=dict(curve=iou))
class BIoU(object):
def __init__(self, dilation_ratio=0.02):
self.bious = []
self.dilation_ratio = dilation_ratio
def mask_to_boundary(self, mask):
h, w = mask.shape
img_diag = np.sqrt(h ** 2 + w ** 2)
dilation = int(round(self.dilation_ratio * img_diag))
if dilation < 1:
dilation = 1
# Pad image so mask truncated by the image border is also considered as boundary.
new_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0)
kernel = np.ones((3, 3), dtype=np.uint8)
new_mask_erode = cv2.erode(new_mask, kernel, iterations=dilation)
mask_erode = new_mask_erode[1 : h + 1, 1 : w + 1]
# G_d intersects G in the paper.
return mask - mask_erode
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
bious = self.cal_biou(pred=pred, gt=gt)
self.bious.append(bious)
def cal_biou(self, pred, gt):
pred = (pred * 255).astype(np.uint8)
pred = self.mask_to_boundary(pred)
gt = (gt * 255).astype(np.uint8)
gt = self.mask_to_boundary(gt)
gt = gt > 128
bins = np.linspace(0, 256, 257)
fg_hist, _ = np.histogram(pred[gt], bins=bins) # ture positive
bg_hist, _ = np.histogram(pred[~gt], bins=bins) # false positive
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
TPs = fg_w_thrs
Ps = fg_w_thrs + bg_w_thrs # positives
Ps[Ps == 0] = 1
T = max(np.count_nonzero(gt), 1)
ious = TPs / (T + bg_w_thrs)
return ious
def get_results(self) -> dict:
biou = np.mean(np.array(self.bious, dtype=_TYPE), axis=0)
return dict(biou=dict(curve=biou))
class TIoU(object):
def __init__(self, dilation_ratio=0.001):
self.tious = []
self.dilation_ratio = dilation_ratio
def mask_to_boundary(self, mask):
h, w = mask.shape
img_diag = np.sqrt(h ** 2 + w ** 2)
dilation = int(round(self.dilation_ratio * img_diag))
if dilation < 1:
dilation = 1
# Pad image so mask truncated by the image border is also considered as boundary.
new_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0)
kernel = np.ones((3, 3), dtype=np.uint8)
new_mask_erode = cv2.erode(new_mask, kernel, iterations=dilation)
mask_erode = new_mask_erode[1 : h + 1, 1 : w + 1]
# G_d intersects G in the paper.
return mask - mask_erode
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
tious = self.cal_tiou(pred=pred, gt=gt)
self.tious.append(tious)
def cal_tiou(self, pred, gt):
pred = (pred * 255).astype(np.uint8)
gt = (gt * 255).astype(np.uint8)
gt = self.mask_to_boundary(gt)
gt = gt > 128
pred = pred * gt
bins = np.linspace(0, 256, 257)
fg_hist, _ = np.histogram(pred[gt], bins=bins) # ture positive
bg_hist, _ = np.histogram(pred[~gt], bins=bins) # false positive
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
TPs = fg_w_thrs
Ps = fg_w_thrs + bg_w_thrs # positives
Ps[Ps == 0] = 1
T = max(np.count_nonzero(gt), 1)
ious = TPs / (T + bg_w_thrs)
return ious
def get_results(self) -> dict:
tiou = np.mean(np.array(self.tious, dtype=_TYPE), axis=0)
return dict(tiou=dict(curve=tiou))
class Fmeasure(object):
def __init__(self, beta: float = 0.3):
"""
F-measure for SOD.
::
@inproceedings{Fmeasure,
title={Frequency-tuned salient region detection},
author={Achanta, Radhakrishna and Hemami, Sheila and Estrada, Francisco and S{\"u}sstrunk, Sabine},
booktitle=CVPR,
number={CONF},
pages={1597--1604},
year={2009}
}
:param beta: the weight of the precision
"""
self.beta = beta
self.precisions = []
self.recalls = []
self.adaptive_fms = []
self.changeable_fms = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt)
self.adaptive_fms.append(adaptive_fm)
precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt)
self.precisions.append(precisions)
self.recalls.append(recalls)
self.changeable_fms.append(changeable_fms)
def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the adaptive F-measure.
:return: adaptive_fm
"""
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
binary_predcition = pred >= adaptive_threshold
area_intersection = binary_predcition[gt].sum()
if area_intersection == 0:
adaptive_fm = 0
else:
pre = area_intersection / np.count_nonzero(binary_predcition)
rec = area_intersection / np.count_nonzero(gt)
adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec)
return adaptive_fm
def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple:
"""
Calculate the corresponding precision and recall when the threshold changes from 0 to 255.
These precisions and recalls can be used to obtain the mean F-measure, maximum F-measure,
precision-recall curve and F-measure-threshold curve.
For convenience, ``changeable_fms`` is provided here, which can be used directly to obtain
the mean F-measure, maximum F-measure and F-measure-threshold curve.
:return: precisions, recalls, changeable_fms
"""
pred = (pred * 255).astype(np.uint8)
bins = np.linspace(0, 256, 257)
fg_hist, _ = np.histogram(pred[gt], bins=bins)
bg_hist, _ = np.histogram(pred[~gt], bins=bins)
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
TPs = fg_w_thrs
Ps = fg_w_thrs + bg_w_thrs
Ps[Ps == 0] = 1
T = max(np.count_nonzero(gt), 1)
precisions = TPs / Ps
recalls = TPs / T
numerator = (1 + self.beta) * precisions * recalls
denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls)
changeable_fms = numerator / denominator
return precisions, recalls, changeable_fms
def get_results(self) -> dict:
"""
Return the results about F-measure.
:return: dict(fm=dict(adp=adaptive_fm, curve=changeable_fm), pr=dict(p=precision, r=recall))
"""
adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE))
changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0)
precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0) # N, 256
recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0) # N, 256
return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm), pr=dict(p=precision, r=recall))
class Mae(object):
def __init__(self):
"""
MAE(mean absolute error) for SOD.
::
@inproceedings{MAE,
title={Saliency filters: Contrast based filtering for salient region detection},
author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander},
booktitle=CVPR,
pages={733--740},
year={2012}
}
"""
self.maes = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
mae = self.cal_mae(pred, gt)
self.maes.append(mae)
def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
"""
Calculate the mean absolute error.
:return: mae
"""
mae = np.mean(np.abs(pred - gt))
return mae
def get_results(self) -> dict:
"""
Return the results about MAE.
:return: dict(mae=mae)
"""
mae = np.mean(np.array(self.maes, _TYPE))
return dict(mae=mae)
class Mse(object):
def __init__(self):
"""
MAE(mean absolute error) for SOD.
::
@inproceedings{MAE,
title={Saliency filters: Contrast based filtering for salient region detection},
author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander},
booktitle=CVPR,
pages={733--740},
year={2012}
}
"""
self.mses = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
mse = self.cal_mse(pred, gt)
self.mses.append(mse)
def cal_mse(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
"""
Calculate the mean absolute error.
:return: mse
"""
mse = np.mean((pred - gt) ** 2)
return mse
def get_results(self) -> dict:
"""
Return the results about MSE.
:return: dict(mse=mse)
"""
mse = np.mean(np.array(self.mses, _TYPE))
return dict(mse=mse)
class Smeasure(object):
def __init__(self, alpha: float = 0.5):
"""
S-measure(Structure-measure) of SOD.
::
@inproceedings{Smeasure,
title={Structure-measure: A new way to eval foreground maps},
author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali},
booktitle=ICCV,
pages={4548--4557},
year={2017}
}
:param alpha: the weight for balancing the object score and the region score
"""
self.sms = []
self.alpha = alpha
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
sm = self.cal_sm(pred, gt)
self.sms.append(sm)
def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the S-measure.
:return: s-measure
"""
y = np.mean(gt)
if y == 0:
sm = 1 - np.mean(pred)
elif y == 1:
sm = np.mean(pred)
else:
sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt)
sm = max(0, sm)
return sm
def object(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the object score.
"""
fg = pred * gt
bg = (1 - pred) * (1 - gt)
u = np.mean(gt)
object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt)
return object_score
def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float:
x = np.mean(pred[gt == 1])
sigma_x = np.std(pred[gt == 1])
score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS)
return score
def region(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the region score.
"""
x, y = self.centroid(gt)
part_info = self.divide_with_xy(pred, gt, x, y)
w1, w2, w3, w4 = part_info["weight"]
pred1, pred2, pred3, pred4 = part_info["pred"]
gt1, gt2, gt3, gt4 = part_info["gt"]
score1 = self.ssim(pred1, gt1)
score2 = self.ssim(pred2, gt2)
score3 = self.ssim(pred3, gt3)
score4 = self.ssim(pred4, gt4)
return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4
def centroid(self, matrix: np.ndarray) -> tuple:
"""
To ensure consistency with the matlab code, one is added to the centroid coordinate,
so there is no need to use the redundant addition operation when dividing the region later,
because the sequence generated by ``1:X`` in matlab will contain ``X``.
:param matrix: a data array
:return: the centroid coordinate
"""
h, w = matrix.shape
if matrix.sum() == 0:
x = np.round(w / 2)
y = np.round(h / 2)
else:
area_object = np.sum(matrix)
row_ids = np.arange(h)
col_ids = np.arange(w)
x = np.round(np.sum(np.sum(matrix, axis=0) * col_ids) / area_object)
y = np.round(np.sum(np.sum(matrix, axis=1) * row_ids) / area_object)
return int(x) + 1, int(y) + 1
def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x: int, y: int) -> dict:
"""
Use (x,y) to divide the ``pred`` and the ``gt`` into four submatrices, respectively.
"""
h, w = gt.shape
area = h * w
gt_LT = gt[0:y, 0:x]
gt_RT = gt[0:y, x:w]
gt_LB = gt[y:h, 0:x]
gt_RB = gt[y:h, x:w]
pred_LT = pred[0:y, 0:x]
pred_RT = pred[0:y, x:w]
pred_LB = pred[y:h, 0:x]
pred_RB = pred[y:h, x:w]
w1 = x * y / area
w2 = y * (w - x) / area
w3 = (h - y) * x / area
w4 = 1 - w1 - w2 - w3
return dict(
gt=(gt_LT, gt_RT, gt_LB, gt_RB),
pred=(pred_LT, pred_RT, pred_LB, pred_RB),
weight=(w1, w2, w3, w4),
)
def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the ssim score.
"""
h, w = pred.shape
N = h * w
x = np.mean(pred)
y = np.mean(gt)
sigma_x = np.sum((pred - x) ** 2) / (N - 1)
sigma_y = np.sum((gt - y) ** 2) / (N - 1)
sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1)
alpha = 4 * x * y * sigma_xy
beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y)
if alpha != 0:
score = alpha / (beta + _EPS)
elif alpha == 0 and beta == 0:
score = 1
else:
score = 0
return score
def get_results(self) -> dict:
"""
Return the results about S-measure.
:return: dict(sm=sm)
"""
sm = np.mean(np.array(self.sms, dtype=_TYPE))
return dict(sm=sm)
class Emeasure(object):
def __init__(self):
"""
E-measure(Enhanced-alignment Measure) for SOD.
More details about the implementation can be found in https://www.yuque.com/lart/blog/lwgt38
::
@inproceedings{Emeasure,
title="Enhanced-alignment Measure for Binary Foreground Map Evaluation",
author="Deng-Ping {Fan} and Cheng {Gong} and Yang {Cao} and Bo {Ren} and Ming-Ming {Cheng} and Ali {Borji}",
booktitle=IJCAI,
pages="698--704",
year={2018}
}
"""
self.adaptive_ems = []
self.changeable_ems = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
self.gt_fg_numel = np.count_nonzero(gt)
self.gt_size = gt.shape[0] * gt.shape[1]
changeable_ems = self.cal_changeable_em(pred, gt)
self.changeable_ems.append(changeable_ems)
adaptive_em = self.cal_adaptive_em(pred, gt)
self.adaptive_ems.append(adaptive_em)
def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the adaptive E-measure.
:return: adaptive_em
"""
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold)
return adaptive_em
def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
"""
Calculate the changeable E-measure, which can be used to obtain the mean E-measure,
the maximum E-measure and the E-measure-threshold curve.
:return: changeable_ems
"""
changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt)
return changeable_ems
def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float:
"""
Calculate the E-measure corresponding to the specific threshold.
Variable naming rules within the function:
``[pred attribute(foreground fg, background bg)]_[gt attribute(foreground fg, background bg)]_[meaning]``
If only ``pred`` or ``gt`` is considered, another corresponding attribute location is replaced with '``_``'.
"""
binarized_pred = pred >= threshold
fg_fg_numel = np.count_nonzero(binarized_pred & gt)
fg_bg_numel = np.count_nonzero(binarized_pred & ~gt)
fg___numel = fg_fg_numel + fg_bg_numel
bg___numel = self.gt_size - fg___numel
if self.gt_fg_numel == 0:
enhanced_matrix_sum = bg___numel
elif self.gt_fg_numel == self.gt_size:
enhanced_matrix_sum = fg___numel
else:
parts_numel, combinations = self.generate_parts_numel_combinations(
fg_fg_numel=fg_fg_numel,
fg_bg_numel=fg_bg_numel,
pred_fg_numel=fg___numel,
pred_bg_numel=bg___numel,
)
results_parts = []
for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)):
align_matrix_value = (
2
* (combination[0] * combination[1])
/ (combination[0] ** 2 + combination[1] ** 2 + _EPS)
)
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
results_parts.append(enhanced_matrix_value * part_numel)
enhanced_matrix_sum = sum(results_parts)
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
return em
def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
"""
Calculate the E-measure corresponding to the threshold that varies from 0 to 255..
Variable naming rules within the function:
``[pred attribute(foreground fg, background bg)]_[gt attribute(foreground fg, background bg)]_[meaning]``
If only ``pred`` or ``gt`` is considered, another corresponding attribute location is replaced with '``_``'.
"""
pred = (pred * 255).astype(np.uint8)
bins = np.linspace(0, 256, 257)
fg_fg_hist, _ = np.histogram(pred[gt], bins=bins)
fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins)
fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0)
fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0)
fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs
bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs
if self.gt_fg_numel == 0:
enhanced_matrix_sum = bg___numel_w_thrs
elif self.gt_fg_numel == self.gt_size:
enhanced_matrix_sum = fg___numel_w_thrs
else:
parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations(
fg_fg_numel=fg_fg_numel_w_thrs,
fg_bg_numel=fg_bg_numel_w_thrs,
pred_fg_numel=fg___numel_w_thrs,
pred_bg_numel=bg___numel_w_thrs,
)
results_parts = np.empty(shape=(4, 256), dtype=np.float64)
for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)):
align_matrix_value = (
2
* (combination[0] * combination[1])
/ (combination[0] ** 2 + combination[1] ** 2 + _EPS)
)
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
results_parts[i] = enhanced_matrix_value * part_numel
enhanced_matrix_sum = results_parts.sum(axis=0)
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
return em
def generate_parts_numel_combinations(
self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel
):
bg_fg_numel = self.gt_fg_numel - fg_fg_numel
bg_bg_numel = pred_bg_numel - bg_fg_numel
parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel]
mean_pred_value = pred_fg_numel / self.gt_size
mean_gt_value = self.gt_fg_numel / self.gt_size
demeaned_pred_fg_value = 1 - mean_pred_value
demeaned_pred_bg_value = 0 - mean_pred_value
demeaned_gt_fg_value = 1 - mean_gt_value
demeaned_gt_bg_value = 0 - mean_gt_value
combinations = [
(demeaned_pred_fg_value, demeaned_gt_fg_value),
(demeaned_pred_fg_value, demeaned_gt_bg_value),
(demeaned_pred_bg_value, demeaned_gt_fg_value),
(demeaned_pred_bg_value, demeaned_gt_bg_value),
]
return parts_numel, combinations
def get_results(self) -> dict:
"""
Return the results about E-measure.
:return: dict(em=dict(adp=adaptive_em, curve=changeable_em))
"""
adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE))
changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE), axis=0)
return dict(em=dict(adp=adaptive_em, curve=changeable_em))
class WeightedFmeasure(object):
def __init__(self, beta: float = 1):
"""
Weighted F-measure for SOD.
::
@inproceedings{wFmeasure,
title={How to eval foreground maps?},
author={Margolin, Ran and Zelnik-Manor, Lihi and Tal, Ayellet},
booktitle=CVPR,
pages={248--255},
year={2014}
}
:param beta: the weight of the precision
"""
self.beta = beta
self.weighted_fms = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
if np.all(~gt):
wfm = 0
else:
wfm = self.cal_wfm(pred, gt)
self.weighted_fms.append(wfm)
def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the weighted F-measure.
"""
Dst, Idxt = bwdist(gt == 0, return_indices=True)
E = np.abs(pred - gt)
Et = np.copy(E)
Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]]
K = self.matlab_style_gauss2D((7, 7), sigma=5)
EA = convolve(Et, weights=K, mode="constant", cval=0)
MIN_E_EA = np.where(gt & (EA < E), EA, E)
B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt))
Ew = MIN_E_EA * B
TPw = np.sum(gt) - np.sum(Ew[gt == 1])
FPw = np.sum(Ew[gt == 0])
R = 1 - np.mean(Ew[gt == 1])
P = TPw / (TPw + FPw + _EPS)
Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS)
return Q
def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray:
"""
2D gaussian mask - should give the same result as MATLAB's
fspecial('saliency',[shape],[sigma])
"""
m, n = [(ss - 1) / 2 for ss in shape]
y, x = np.ogrid[-m : m + 1, -n : n + 1]
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
def get_results(self) -> dict:
"""
Return the results about weighted F-measure.
:return: dict(wfm=weighted_fm)
"""
weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE))
return dict(wfm=weighted_fm)
class BoundaryAccuracy(object):
def __init__(self):
"""
MAE(mean absolute error) for SOD.
::
@inproceedings{MAE,
title={Saliency filters: Contrast based filtering for salient region detection},
author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander},
booktitle=CVPR,
pages={733--740},
year={2012}
}
"""
self.bas = []
self.all_h = 0
self.all_w = 0
self.all_max = 0
def step(self, pred: np.ndarray, gt: np.ndarray):
# pred, gt = _prepare_data(pred, gt)
refined = gt.copy()
rmin = cmin = 0
rmax, cmax = gt.shape
self.all_h += rmax
self.all_w += cmax
self.all_max += max(rmax, cmax)
refined_h, refined_w = refined.shape
if refined_h != cmax:
refined = np.array(Image.fromarray(pred).resize((cmax, rmax), Image.BILINEAR))
if not(gt.sum() < 32*32):
if not((cmax==cmin) or (rmax==rmin)):
class_refined_prob = np.array(Image.fromarray(pred).resize((cmax-cmin, rmax-rmin), Image.BILINEAR))
refined[rmin:rmax, cmin:cmax] = class_refined_prob
pred = pred > 128
gt = gt > 128
ba = self.cal_ba(pred, gt)
self.bas.append(ba)
def get_disk_kernel(self, radius):
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (radius*2+1, radius*2+1))
def cal_ba(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
"""
Calculate the mean absolute error.
:return: ba
"""
gt = gt.astype(np.uint8)
pred = pred.astype(np.uint8)
h, w = gt.shape
min_radius = 1
max_radius = (w+h)/300
num_steps = 5
pred_acc = [None] * num_steps
for i in range(num_steps):
curr_radius = min_radius + int((max_radius-min_radius)/num_steps*i)
kernel = self.get_disk_kernel(curr_radius)
boundary_region = cv2.morphologyEx(gt, cv2.MORPH_GRADIENT, kernel) > 0
gt_in_bound = gt[boundary_region]
pred_in_bound = pred[boundary_region]
num_edge_pixels = (boundary_region).sum()
num_pred_gd_pix = ((gt_in_bound) * (pred_in_bound) + (1-gt_in_bound) * (1-pred_in_bound)).sum()
pred_acc[i] = num_pred_gd_pix / num_edge_pixels
ba = sum(pred_acc)/num_steps
return ba
def get_results(self) -> dict:
"""
Return the results about MAE.
:return: dict(mae=mae)
"""
mba = np.mean(np.array(self.bas, _TYPE))
return dict(mba=mba) |