File size: 7,087 Bytes
f7f604d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import cv2
import sys
import tqdm
import torch
import datetime

import torch.nn as nn
import torch.distributed as dist
import torch.cuda as cuda

from torch.utils.data.dataloader import DataLoader
from torch.optim import Adam, SGD
from torch.utils.data.distributed import DistributedSampler
from torch.cuda.amp.grad_scaler import GradScaler
from torch.cuda.amp.autocast_mode import autocast

filepath = os.path.split(os.path.abspath(__file__))[0]
repopath = os.path.split(filepath)[0]
sys.path.append(repopath)

from lib import *
from lib.optim import *
from data.dataloader import *
from utils.misc import *

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False

def train(opt, args):
    train_dataset = eval(opt.Train.Dataset.type)(
        root=opt.Train.Dataset.root, 
        sets=opt.Train.Dataset.sets,
        tfs=opt.Train.Dataset.transforms)

    if args.device_num > 1:
        cuda.set_device(args.local_rank)
        dist.init_process_group(backend='nccl', rank=args.local_rank, world_size=args.device_num, timeout=datetime.timedelta(seconds=3600))
        train_sampler = DistributedSampler(train_dataset, shuffle=True)
    else:
        train_sampler = None

    train_loader = DataLoader(dataset=train_dataset,
                            batch_size=opt.Train.Dataloader.batch_size,
                            shuffle=train_sampler is None,
                            sampler=train_sampler,
                            num_workers=opt.Train.Dataloader.num_workers,
                            pin_memory=opt.Train.Dataloader.pin_memory,
                            drop_last=True)

    model_ckpt = None
    state_ckpt = None
    
    if args.resume is True:
        if os.path.isfile(os.path.join(opt.Train.Checkpoint.checkpoint_dir, 'latest.pth')):
            model_ckpt = torch.load(os.path.join(opt.Train.Checkpoint.checkpoint_dir, 'latest.pth'), map_location='cpu')
            if args.local_rank <= 0:
                print('Resume from checkpoint')
        if os.path.isfile(os.path.join(opt.Train.Checkpoint.checkpoint_dir, 'state.pth')):
            state_ckpt = torch.load(os.path.join(opt.Train.Checkpoint.checkpoint_dir,  'state.pth'), map_location='cpu')
            if args.local_rank <= 0:
                print('Resume from state')
        
    model = eval(opt.Model.name)(**opt.Model)
    if model_ckpt is not None:
        model.load_state_dict(model_ckpt)

    if args.device_num > 1:
        model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
        model = model.cuda()
        model = nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
    else:
        model = model.cuda()

    backbone_params = nn.ParameterList()
    decoder_params = nn.ParameterList()

    for name, param in model.named_parameters():
        if 'backbone' in name:
            backbone_params.append(param)
        else:
            decoder_params.append(param)

    params_list = [{'params': backbone_params}, {
        'params': decoder_params, 'lr': opt.Train.Optimizer.lr * 10}]
    
    optimizer = eval(opt.Train.Optimizer.type)(
        params_list, opt.Train.Optimizer.lr, weight_decay=opt.Train.Optimizer.weight_decay)
    
    if state_ckpt is not None:
        optimizer.load_state_dict(state_ckpt['optimizer'])
    
    if opt.Train.Optimizer.mixed_precision is True:
        scaler = GradScaler()
    else:
        scaler = None

    scheduler = eval(opt.Train.Scheduler.type)(optimizer, gamma=opt.Train.Scheduler.gamma,
                                                minimum_lr=opt.Train.Scheduler.minimum_lr,
                                                max_iteration=len(train_loader) * opt.Train.Scheduler.epoch,
                                                warmup_iteration=opt.Train.Scheduler.warmup_iteration)
    if state_ckpt is not None:
        scheduler.load_state_dict(state_ckpt['scheduler'])

    model.train()

    start = 1
    if state_ckpt is not None:
        start = state_ckpt['epoch']
        
    epoch_iter = range(start, opt.Train.Scheduler.epoch + 1)
    if args.local_rank <= 0 and args.verbose is True:
        epoch_iter = tqdm.tqdm(epoch_iter, desc='Epoch', total=opt.Train.Scheduler.epoch, initial=start - 1,
                                position=0, bar_format='{desc:<5.5}{percentage:3.0f}%|{bar:40}{r_bar}')

    for epoch in epoch_iter:
        if args.local_rank <= 0 and args.verbose is True:
            step_iter = tqdm.tqdm(enumerate(train_loader, start=1), desc='Iter', total=len(
                train_loader), position=1, leave=False, bar_format='{desc:<5.5}{percentage:3.0f}%|{bar:40}{r_bar}')
            if args.device_num > 1 and train_sampler is not None:
                train_sampler.set_epoch(epoch)
        else:
            step_iter = enumerate(train_loader, start=1)

        for i, sample in step_iter:
            optimizer.zero_grad()
            if opt.Train.Optimizer.mixed_precision is True and scaler is not None:
                with autocast():
                    sample = to_cuda(sample)
                    out = model(sample)

                scaler.scale(out['loss']).backward()
                scaler.step(optimizer)
                scaler.update()
                scheduler.step()
            else:
                sample = to_cuda(sample)
                out = model(sample)
                out['loss'].backward()
                optimizer.step()
                scheduler.step()

            if args.local_rank <= 0 and args.verbose is True:
                step_iter.set_postfix({'loss': out['loss'].item()})

        if args.local_rank <= 0:
            os.makedirs(opt.Train.Checkpoint.checkpoint_dir, exist_ok=True)
            os.makedirs(os.path.join(
                opt.Train.Checkpoint.checkpoint_dir, 'debug'), exist_ok=True)
            if epoch % opt.Train.Checkpoint.checkpoint_epoch == 0:
                if args.device_num > 1:
                    model_ckpt = model.module.state_dict()  
                else:
                    model_ckpt = model.state_dict()
                    
                state_ckpt = {'epoch': epoch + 1,
                            'optimizer': optimizer.state_dict(),
                            'scheduler': scheduler.state_dict()}
                
                torch.save(model_ckpt, os.path.join(opt.Train.Checkpoint.checkpoint_dir, 'latest.pth'))
                torch.save(state_ckpt, os.path.join(opt.Train.Checkpoint.checkpoint_dir,  'state.pth'))
                
            if args.debug is True:
                debout = debug_tile(sum([out[k] for k in opt.Train.Debug.keys], []), activation=torch.sigmoid)
                cv2.imwrite(os.path.join(opt.Train.Checkpoint.checkpoint_dir, 'debug', str(epoch) + '.png'), debout)
    
    if args.local_rank <= 0:
        torch.save(model.module.state_dict() if args.device_num > 1 else model.state_dict(),
                    os.path.join(opt.Train.Checkpoint.checkpoint_dir, 'latest.pth'))


if __name__ == '__main__':
    args = parse_args()
    opt = load_config(args.config)
    train(opt, args)