File size: 5,749 Bytes
f7f604d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from optparse import Option
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
import numpy as np
from kornia.morphology import dilation, erosion
from torch.nn.parameter import Parameter
from typing import Optional
class ImagePyramid:
def __init__(self, ksize=7, sigma=1, channels=1):
self.ksize = ksize
self.sigma = sigma
self.channels = channels
k = cv2.getGaussianKernel(ksize, sigma)
k = np.outer(k, k)
k = torch.tensor(k).float()
self.kernel = k.repeat(channels, 1, 1, 1)
def to(self, device):
self.kernel = self.kernel.to(device)
return self
def cuda(self, idx=None):
if idx is None:
idx = torch.cuda.current_device()
self.to(device="cuda:{}".format(idx))
return self
def expand(self, x):
z = torch.zeros_like(x)
x = torch.cat([x, z, z, z], dim=1)
x = F.pixel_shuffle(x, 2)
x = F.pad(x, (self.ksize // 2, ) * 4, mode='reflect')
x = F.conv2d(x, self.kernel * 4, groups=self.channels)
return x
def reduce(self, x):
x = F.pad(x, (self.ksize // 2, ) * 4, mode='reflect')
x = F.conv2d(x, self.kernel, groups=self.channels)
x = x[:, :, ::2, ::2]
return x
def deconstruct(self, x):
reduced_x = self.reduce(x)
expanded_reduced_x = self.expand(reduced_x)
if x.shape != expanded_reduced_x.shape:
expanded_reduced_x = F.interpolate(expanded_reduced_x, x.shape[-2:])
laplacian_x = x - expanded_reduced_x
return reduced_x, laplacian_x
def reconstruct(self, x, laplacian_x):
expanded_x = self.expand(x)
if laplacian_x.shape != expanded_x:
laplacian_x = F.interpolate(laplacian_x, expanded_x.shape[-2:], mode='bilinear', align_corners=True)
return expanded_x + laplacian_x
class Transition:
def __init__(self, k=3):
self.kernel = torch.tensor(cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (k, k))).float()
def to(self, device):
self.kernel = self.kernel.to(device)
return self
def cuda(self, idx=None):
if idx is None:
idx = torch.cuda.current_device()
self.to(device="cuda:{}".format(idx))
return self
def __call__(self, x):
x = torch.sigmoid(x)
dx = dilation(x, self.kernel)
ex = erosion(x, self.kernel)
return ((dx - ex) > .5).float()
class Conv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, padding='same', bias=False, bn=True, relu=False):
super(Conv2d, self).__init__()
if '__iter__' not in dir(kernel_size):
kernel_size = (kernel_size, kernel_size)
if '__iter__' not in dir(stride):
stride = (stride, stride)
if '__iter__' not in dir(dilation):
dilation = (dilation, dilation)
if padding == 'same':
width_pad_size = kernel_size[0] + (kernel_size[0] - 1) * (dilation[0] - 1)
height_pad_size = kernel_size[1] + (kernel_size[1] - 1) * (dilation[1] - 1)
elif padding == 'valid':
width_pad_size = 0
height_pad_size = 0
else:
if '__iter__' in dir(padding):
width_pad_size = padding[0] * 2
height_pad_size = padding[1] * 2
else:
width_pad_size = padding * 2
height_pad_size = padding * 2
width_pad_size = width_pad_size // 2 + (width_pad_size % 2 - 1)
height_pad_size = height_pad_size // 2 + (height_pad_size % 2 - 1)
pad_size = (width_pad_size, height_pad_size)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_size, dilation, groups, bias=bias)
self.reset_parameters()
if bn is True:
self.bn = nn.BatchNorm2d(out_channels)
else:
self.bn = None
if relu is True:
self.relu = nn.ReLU(inplace=True)
else:
self.relu = None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
def reset_parameters(self):
nn.init.kaiming_normal_(self.conv.weight)
class SelfAttention(nn.Module):
def __init__(self, in_channels, mode='hw', stage_size=None):
super(SelfAttention, self).__init__()
self.mode = mode
self.query_conv = Conv2d(in_channels, in_channels // 8, kernel_size=(1, 1))
self.key_conv = Conv2d(in_channels, in_channels // 8, kernel_size=(1, 1))
self.value_conv = Conv2d(in_channels, in_channels, kernel_size=(1, 1))
self.gamma = Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
self.stage_size = stage_size
def forward(self, x):
batch_size, channel, height, width = x.size()
axis = 1
if 'h' in self.mode:
axis *= height
if 'w' in self.mode:
axis *= width
view = (batch_size, -1, axis)
projected_query = self.query_conv(x).view(*view).permute(0, 2, 1)
projected_key = self.key_conv(x).view(*view)
attention_map = torch.bmm(projected_query, projected_key)
attention = self.softmax(attention_map)
projected_value = self.value_conv(x).view(*view)
out = torch.bmm(projected_value, attention.permute(0, 2, 1))
out = out.view(batch_size, channel, height, width)
out = self.gamma * out + x
return out
|