File size: 5,749 Bytes
f7f604d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from optparse import Option
import torch
import torch.nn as nn
import torch.nn.functional as F

import cv2
import numpy as np

from kornia.morphology import dilation, erosion
from torch.nn.parameter import Parameter
from typing import Optional
class ImagePyramid:
    def __init__(self, ksize=7, sigma=1, channels=1):
        self.ksize = ksize
        self.sigma = sigma
        self.channels = channels

        k = cv2.getGaussianKernel(ksize, sigma)
        k = np.outer(k, k)
        k = torch.tensor(k).float()
        self.kernel = k.repeat(channels, 1, 1, 1)
        
    def to(self, device):
        self.kernel = self.kernel.to(device)
        return self
        
    def cuda(self, idx=None):
        if idx is None:
            idx = torch.cuda.current_device()
            
        self.to(device="cuda:{}".format(idx))
        return self

    def expand(self, x):
        z = torch.zeros_like(x)
        x = torch.cat([x, z, z, z], dim=1)
        x = F.pixel_shuffle(x, 2)
        x = F.pad(x, (self.ksize // 2, ) * 4, mode='reflect')
        x = F.conv2d(x, self.kernel * 4, groups=self.channels)
        return x

    def reduce(self, x):
        x = F.pad(x, (self.ksize // 2, ) * 4, mode='reflect')
        x = F.conv2d(x, self.kernel, groups=self.channels)
        x = x[:, :, ::2, ::2]
        return x

    def deconstruct(self, x):
        reduced_x = self.reduce(x)
        expanded_reduced_x = self.expand(reduced_x)

        if x.shape != expanded_reduced_x.shape:
            expanded_reduced_x = F.interpolate(expanded_reduced_x, x.shape[-2:])

        laplacian_x = x - expanded_reduced_x
        return reduced_x, laplacian_x

    def reconstruct(self, x, laplacian_x):
        expanded_x = self.expand(x)
        if laplacian_x.shape != expanded_x:
            laplacian_x = F.interpolate(laplacian_x, expanded_x.shape[-2:], mode='bilinear', align_corners=True)
        return expanded_x + laplacian_x

class Transition:
    def __init__(self, k=3):
        self.kernel = torch.tensor(cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (k, k))).float()
        
    def to(self, device):
        self.kernel = self.kernel.to(device)
        return self
        
    def cuda(self, idx=None):
        if idx is None:
            idx = torch.cuda.current_device()
            
        self.to(device="cuda:{}".format(idx))
        return self
        
    def __call__(self, x):
        x = torch.sigmoid(x)
        dx = dilation(x, self.kernel)
        ex = erosion(x, self.kernel)
        
        return ((dx - ex) > .5).float()

class Conv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, padding='same', bias=False, bn=True, relu=False):
        super(Conv2d, self).__init__()
        if '__iter__' not in dir(kernel_size):
            kernel_size = (kernel_size, kernel_size)
        if '__iter__' not in dir(stride):
            stride = (stride, stride)
        if '__iter__' not in dir(dilation):
            dilation = (dilation, dilation)

        if padding == 'same':
            width_pad_size = kernel_size[0] + (kernel_size[0] - 1) * (dilation[0] - 1)
            height_pad_size = kernel_size[1] + (kernel_size[1] - 1) * (dilation[1] - 1)
        elif padding == 'valid':
            width_pad_size = 0
            height_pad_size = 0
        else:
            if '__iter__' in dir(padding):
                width_pad_size = padding[0] * 2
                height_pad_size = padding[1] * 2
            else:
                width_pad_size = padding * 2
                height_pad_size = padding * 2

        width_pad_size = width_pad_size // 2 + (width_pad_size % 2 - 1)
        height_pad_size = height_pad_size // 2 + (height_pad_size % 2 - 1)
        pad_size = (width_pad_size, height_pad_size)
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_size, dilation, groups, bias=bias)
        self.reset_parameters()

        if bn is True:
            self.bn = nn.BatchNorm2d(out_channels)
        else:
            self.bn = None
        
        if relu is True:
            self.relu = nn.ReLU(inplace=True)
        else:
            self.relu = None

    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x

    def reset_parameters(self):
        nn.init.kaiming_normal_(self.conv.weight)


class SelfAttention(nn.Module):
    def __init__(self, in_channels, mode='hw', stage_size=None):
        super(SelfAttention, self).__init__()

        self.mode = mode

        self.query_conv = Conv2d(in_channels, in_channels // 8, kernel_size=(1, 1))
        self.key_conv = Conv2d(in_channels, in_channels // 8, kernel_size=(1, 1))
        self.value_conv = Conv2d(in_channels, in_channels, kernel_size=(1, 1))

        self.gamma = Parameter(torch.zeros(1))
        self.softmax = nn.Softmax(dim=-1)
        
        self.stage_size = stage_size

    def forward(self, x):
        batch_size, channel, height, width = x.size()

        axis = 1
        if 'h' in self.mode:
            axis *= height
        if 'w' in self.mode:
            axis *= width

        view = (batch_size, -1, axis)

        projected_query = self.query_conv(x).view(*view).permute(0, 2, 1)
        projected_key = self.key_conv(x).view(*view)

        attention_map = torch.bmm(projected_query, projected_key)
        attention = self.softmax(attention_map)
        projected_value = self.value_conv(x).view(*view)

        out = torch.bmm(projected_value, attention.permute(0, 2, 1))
        out = out.view(batch_size, channel, height, width)

        out = self.gamma * out + x
        return out