File size: 2,034 Bytes
887b25f 30bd9c0 887b25f 30bd9c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
license: creativeml-openrail-m
thumbnail: "https://huggingface.co/coreml/coreml-anything-v3-1/resolve/main/example-images/thumbnail.png"
language:
- en
tags:
- coreml
- stable-diffusion
- stable-diffusion-diffusers
---
# Core ML Converted Model
This model was converted to Core ML for use on Apple Silicon devices by following Apple's instructions [here](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml).<br>
Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br>
`split_einsum` version is compatible with all compute unit options including Neural Engine.<br>
`original` version is only compatible with CPU & GPU option.
# 🧩 Paper Cut model V1
This is the fine-tuned Stable Diffusion model trained on Paper Cut images.
Use **PaperCut** in your prompts.
### Sample images:


Based on StableDiffusion 1.5 model
### 🧨 Diffusers
This model can be used just like any other Stable Diffusion model. For more information,
please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX]().
```python
from diffusers import StableDiffusionPipeline
import torch
model_id = "Fictiverse/Stable_Diffusion_PaperCut_Model"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "PaperCut R2-D2"
image = pipe(prompt).images[0]
image.save("./R2-D2.png")
```
### ✨ Community spotlight :
@PiyarSquare :
[](https://www.youtube.com/watch?v=wQWHnZlxFj8) |