connersdavis
commited on
Commit
·
eb9d96a
1
Parent(s):
be39b45
handler.py
Browse files- handler.py +29 -21
handler.py
CHANGED
@@ -1,28 +1,36 @@
|
|
1 |
-
from typing import Dict, List, Any
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
def __init__(self, path=""):
|
6 |
-
|
7 |
-
self.
|
|
|
8 |
|
9 |
-
|
|
|
10 |
"""
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
A :obj:`
|
16 |
"""
|
17 |
-
|
18 |
-
inputs = data.pop("inputs",data)
|
19 |
-
date = data.pop("date", None)
|
20 |
-
|
21 |
-
# check if date exists and if it is holiday
|
22 |
-
if date is not None and date in self.holidays:
|
23 |
-
return [{"label": "happy", "score": 1}]
|
24 |
|
|
|
|
|
|
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
return prediction
|
|
|
|
|
|
|
1 |
|
2 |
+
from typing import Dict, List, Any
|
3 |
+
import torch
|
4 |
+
from torch import autocast
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
import base64
|
7 |
+
from io import BytesIO
|
8 |
+
# set device
|
9 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
+
|
11 |
+
if device.type != 'cuda':
|
12 |
+
raise ValueError("need to run on GPU")
|
13 |
+
|
14 |
+
class EndpointHandler():
|
15 |
def __init__(self, path=""):
|
16 |
+
# load the optimized model
|
17 |
+
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
18 |
+
self.pipe = self.pipe.to(device)
|
19 |
|
20 |
+
|
21 |
+
def __call__(self, data: Any) -> "PIL.Image":
|
22 |
"""
|
23 |
+
Args:
|
24 |
+
data (:obj:):
|
25 |
+
includes the input data and the parameters for the inference.
|
26 |
+
Return:
|
27 |
+
A :obj:`dict`:. base64 encoded image
|
28 |
"""
|
29 |
+
inputs = data.pop("inputs", data)
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# run inference pipeline
|
32 |
+
with autocast(device.type):
|
33 |
+
image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
|
34 |
|
35 |
+
# encoding image as base 64 is done by the default toolkit
|
36 |
+
return image
|
|