import torch import torch.nn as nn import torch.nn.functional as F import math class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=512, dropout=0.1): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) pe = torch.zeros(max_len, 1, d_model) pe[:, 0, 0::2] = torch.sin(position * div_term) pe[:, 0, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) class GEM(nn.Module): def __init__(self, vocab_size, d_model, n_heads, d_ff, n_layers, dropout=0.1): super(GEM, self).__init__() self.embedding = nn.Embedding(vocab_size, d_model) self.positional_encoding = PositionalEncoding(d_model, dropout=dropout) encoder_layers = nn.TransformerEncoderLayer(d_model, n_heads, d_ff, dropout, batch_first=True) self.transformer_encoder = nn.TransformerEncoder(encoder_layers, n_layers) self.fc_out = nn.Linear(d_model, vocab_size) self.d_model = d_model def forward(self, input_ids, attention_mask=None): x = self.embedding(input_ids) * math.sqrt(self.d_model) x = self.positional_encoding(x) if attention_mask is not None: # Ensure attention_mask is in the shape (batch_size, sequence_length) # Convert attention_mask to (batch_size, sequence_length) format attention_mask = attention_mask.bool() # Ensure it's a boolean tensor x = self.transformer_encoder(x, src_key_padding_mask=attention_mask) else: x = self.transformer_encoder(x) x = self.fc_out(x) return x def generate(self, input_ids, max_length, temperature=1.0): self.eval() with torch.no_grad(): for _ in range(max_length - input_ids.size(1)): outputs = self(input_ids) next_token_logits = outputs[:, -1, :] / temperature next_token = torch.multinomial(F.softmax(next_token_logits, dim=-1), num_samples=1) input_ids = torch.cat([input_ids, next_token], dim=-1) return input_ids