Commit
·
960d7f6
1
Parent(s):
0cb871a
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ["ru"]
|
3 |
+
tags:
|
4 |
+
- russian
|
5 |
+
- fill-mask
|
6 |
+
- pretraining
|
7 |
+
- embeddings
|
8 |
+
- masked-lm
|
9 |
+
- tiny
|
10 |
+
license: mit
|
11 |
+
widget:
|
12 |
+
- text: "Миниатюрная модель для [MASK] разных задач."
|
13 |
+
---
|
14 |
+
This is an updated version of [cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny): a small Russian BERT-based encoder with high-quality sentence embeddings.
|
15 |
+
|
16 |
+
The differences from the previous version include:
|
17 |
+
- a larger vocabulary: 83828 tokens instead of 29564;
|
18 |
+
- larger supported sequences: 2048 instead of 512;
|
19 |
+
- sentence embeddings approximate LaBSE closer than before;
|
20 |
+
- the model is focused only on Russian.
|
21 |
+
|
22 |
+
The model should be used as is to produce sentence embeddings (e.g. for KNN classification of short texts) or fine-tuned for a downstream task.
|
23 |
+
|
24 |
+
Sentence embeddings can be produced as follows:
|
25 |
+
|
26 |
+
```python
|
27 |
+
# pip install transformers sentencepiece
|
28 |
+
import torch
|
29 |
+
from transformers import AutoTokenizer, AutoModel
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
|
31 |
+
model = AutoModel.from_pretrained("cointegrated/rubert-tiny2")
|
32 |
+
# model.cuda() # uncomment it if you have a GPU
|
33 |
+
|
34 |
+
def embed_bert_cls(text, model, tokenizer):
|
35 |
+
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
|
36 |
+
with torch.no_grad():
|
37 |
+
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
|
38 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
39 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
40 |
+
return embeddings[0].cpu().numpy()
|
41 |
+
|
42 |
+
print(embed_bert_cls('привет мир', model, tokenizer).shape)
|
43 |
+
# (312,)
|
44 |
+
```
|