--- library_name: transformers license: mit base_model: xlnet/xlnet-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlnet-base-cased-grammar-ner-generic results: [] --- # xlnet-base-cased-grammar-ner-generic This model is a fine-tuned version of [xlnet/xlnet-base-cased](https://huggingface.co/xlnet/xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0907 - Accuracy: 0.9907 - F1 Macro: 0.9282 - F1 Micro: 0.9282 - Precision Macro: 0.9686 - Precision Micro: 0.9686 - Recall Macro: 0.8910 - Recall Micro: 0.8910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 18 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro | Precision Macro | Precision Micro | Recall Macro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:---------------:|:---------------:|:------------:|:------------:| | 0.2156 | 1.0 | 93 | 0.1656 | 0.9273 | 0.4389 | 0.4389 | 0.3873 | 0.3873 | 0.5064 | 0.5064 | | 0.136 | 2.0 | 186 | 0.1196 | 0.9611 | 0.5396 | 0.5396 | 0.8129 | 0.8129 | 0.4038 | 0.4038 | | 0.0885 | 3.0 | 279 | 0.0983 | 0.9673 | 0.7120 | 0.7120 | 0.7031 | 0.7031 | 0.7212 | 0.7212 | | 0.0585 | 4.0 | 372 | 0.0908 | 0.9760 | 0.7898 | 0.7898 | 0.8381 | 0.8381 | 0.7468 | 0.7468 | | 0.0406 | 5.0 | 465 | 0.0952 | 0.9723 | 0.7365 | 0.7365 | 0.8084 | 0.8084 | 0.6763 | 0.6763 | | 0.0323 | 6.0 | 558 | 0.0755 | 0.9826 | 0.8529 | 0.8529 | 0.87 | 0.87 | 0.8365 | 0.8365 | | 0.0228 | 7.0 | 651 | 0.0682 | 0.9858 | 0.8724 | 0.8724 | 0.8795 | 0.8795 | 0.8654 | 0.8654 | | 0.0127 | 8.0 | 744 | 0.0822 | 0.9866 | 0.8799 | 0.8799 | 0.9319 | 0.9319 | 0.8333 | 0.8333 | | 0.0107 | 9.0 | 837 | 0.0802 | 0.9879 | 0.9008 | 0.9008 | 0.9142 | 0.9142 | 0.8878 | 0.8878 | | 0.007 | 10.0 | 930 | 0.0866 | 0.9878 | 0.9042 | 0.9042 | 0.9505 | 0.9505 | 0.8622 | 0.8622 | | 0.0049 | 11.0 | 1023 | 0.0815 | 0.9884 | 0.9005 | 0.9005 | 0.9169 | 0.9169 | 0.8846 | 0.8846 | | 0.0045 | 12.0 | 1116 | 0.0931 | 0.9886 | 0.9082 | 0.9082 | 0.9477 | 0.9477 | 0.8718 | 0.8718 | | 0.003 | 13.0 | 1209 | 0.0926 | 0.9891 | 0.9195 | 0.9195 | 0.9648 | 0.9648 | 0.8782 | 0.8782 | | 0.0015 | 14.0 | 1302 | 0.0840 | 0.9900 | 0.9208 | 0.9208 | 0.9490 | 0.9490 | 0.8942 | 0.8942 | | 0.0009 | 15.0 | 1395 | 0.0895 | 0.9907 | 0.9280 | 0.9280 | 0.9719 | 0.9719 | 0.8878 | 0.8878 | | 0.0007 | 16.0 | 1488 | 0.0898 | 0.9907 | 0.9282 | 0.9282 | 0.9686 | 0.9686 | 0.8910 | 0.8910 | | 0.0005 | 17.0 | 1581 | 0.0903 | 0.9907 | 0.9282 | 0.9282 | 0.9686 | 0.9686 | 0.8910 | 0.8910 | | 0.0006 | 18.0 | 1674 | 0.0907 | 0.9907 | 0.9282 | 0.9282 | 0.9686 | 0.9686 | 0.8910 | 0.8910 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3