Update Model/prelude_Block.py
Browse files- Model/prelude_Block.py +27 -27
Model/prelude_Block.py
CHANGED
@@ -1,28 +1,28 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from typing import Optional, Tuple
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
# Prelude Block (Initial Processing)
|
9 |
-
class PreludeBlock(nn.Module):
|
10 |
-
def __init__(self, vocab_size: int, d_model: int, num_heads: int, dropout: float = 0.1):
|
11 |
-
super().__init__()
|
12 |
-
self.token_embedding = nn.Embedding(vocab_size, d_model)
|
13 |
-
self.pos_encoding = nn.Parameter(torch.zeros(1, 1024, d_model))
|
14 |
-
self.attention = MultiHeadAttention(d_model, num_heads, dropout)
|
15 |
-
self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model)
|
16 |
-
self.feed_forward = nn.Sequential(
|
17 |
-
nn.Linear(d_model, 4 * d_model),
|
18 |
-
nn.GELU(),
|
19 |
-
nn.Linear(4 * d_model, d_model),
|
20 |
-
nn.Dropout(dropout)
|
21 |
-
)
|
22 |
-
|
23 |
-
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
24 |
-
seq_len = x.size(1)
|
25 |
-
x = self.token_embedding(x) + self.pos_encoding[:, :seq_len, :]
|
26 |
-
attended = self.attention(self.norm1(x), mask)
|
27 |
-
x = x + attended
|
28 |
return x + self.feed_forward(self.norm2(x))
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
from multi_head_Attention import MultiHeadAttention
|
6 |
+
|
7 |
+
|
8 |
+
# Prelude Block (Initial Processing)
|
9 |
+
class PreludeBlock(nn.Module):
|
10 |
+
def __init__(self, vocab_size: int, d_model: int, num_heads: int, dropout: float = 0.1):
|
11 |
+
super().__init__()
|
12 |
+
self.token_embedding = nn.Embedding(vocab_size, d_model)
|
13 |
+
self.pos_encoding = nn.Parameter(torch.zeros(1, 1024, d_model))
|
14 |
+
self.attention = MultiHeadAttention(d_model, num_heads, dropout)
|
15 |
+
self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model)
|
16 |
+
self.feed_forward = nn.Sequential(
|
17 |
+
nn.Linear(d_model, 4 * d_model),
|
18 |
+
nn.GELU(),
|
19 |
+
nn.Linear(4 * d_model, d_model),
|
20 |
+
nn.Dropout(dropout)
|
21 |
+
)
|
22 |
+
|
23 |
+
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
24 |
+
seq_len = x.size(1)
|
25 |
+
x = self.token_embedding(x) + self.pos_encoding[:, :seq_len, :]
|
26 |
+
attended = self.attention(self.norm1(x), mask)
|
27 |
+
x = x + attended
|
28 |
return x + self.feed_forward(self.norm2(x))
|