|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from typing import Optional, Tuple |
|
from multi_head_Attention import MultiHeadAttention |
|
|
|
|
|
class RecurrentBlock(nn.Module): |
|
def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1): |
|
super().__init__() |
|
self.attention = MultiHeadAttention(d_model, num_heads, dropout) |
|
self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model) |
|
self.feed_forward = nn.Sequential( |
|
nn.Linear(d_model, 4 * d_model), |
|
nn.GELU(), |
|
nn.Linear(4 * d_model, d_model), |
|
nn.Dropout(dropout) |
|
) |
|
self.state_proj = nn.Linear(d_model, d_model) |
|
|
|
def forward(self, x: torch.Tensor, recurrent_state: torch.Tensor, mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]: |
|
recurrent_state = self.state_proj(recurrent_state) |
|
x = x + recurrent_state |
|
attended = self.attention(self.norm1(x), mask) |
|
return x + attended + self.feed_forward(self.norm2(x)), x |