|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from typing import Optional, Tuple |
|
from multi_head_Attention import MultiHeadAttention |
|
|
|
|
|
|
|
class PreludeBlock(nn.Module): |
|
def __init__(self, vocab_size: int, d_model: int, num_heads: int, dropout: float = 0.1): |
|
super().__init__() |
|
self.token_embedding = nn.Embedding(vocab_size, d_model) |
|
self.pos_encoding = nn.Parameter(torch.zeros(1, 1024, d_model)) |
|
self.attention = MultiHeadAttention(d_model, num_heads, dropout) |
|
self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model) |
|
self.feed_forward = nn.Sequential( |
|
nn.Linear(d_model, 4 * d_model), |
|
nn.GELU(), |
|
nn.Linear(4 * d_model, d_model), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
seq_len = x.size(1) |
|
x = self.token_embedding(x) + self.pos_encoding[:, :seq_len, :] |
|
attended = self.attention(self.norm1(x), mask) |
|
x = x + attended |
|
return x + self.feed_forward(self.norm2(x)) |