Update modeling_codesage.py
Browse files- modeling_codesage.py +67 -1
modeling_codesage.py
CHANGED
|
@@ -11,7 +11,11 @@ from transformers.activations import ACT2FN
|
|
| 11 |
from transformers.modeling_utils import Conv1D, PreTrainedModel
|
| 12 |
from transformers.utils import logging
|
| 13 |
from .config_codesage import CodeSageConfig
|
| 14 |
-
from transformers.modeling_outputs import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
logger = logging.get_logger(__name__)
|
| 17 |
|
|
@@ -151,6 +155,7 @@ class CodeSageBlock(nn.Module):
|
|
| 151 |
|
| 152 |
class CodeSagePreTrainedModel(PreTrainedModel):
|
| 153 |
config_class = CodeSageConfig
|
|
|
|
| 154 |
|
| 155 |
def _init_weights(self, module):
|
| 156 |
"""Initialize the weights."""
|
|
@@ -277,7 +282,68 @@ class CodeSageModel(CodeSagePreTrainedModel):
|
|
| 277 |
)
|
| 278 |
|
| 279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
class CodeSageForSequenceClassification(CodeSagePreTrainedModel):
|
|
|
|
| 281 |
def __init__(self, config):
|
| 282 |
super().__init__(config)
|
| 283 |
self.num_labels = config.num_labels
|
|
|
|
| 11 |
from transformers.modeling_utils import Conv1D, PreTrainedModel
|
| 12 |
from transformers.utils import logging
|
| 13 |
from .config_codesage import CodeSageConfig
|
| 14 |
+
from transformers.modeling_outputs import (
|
| 15 |
+
BaseModelOutputWithPooling,
|
| 16 |
+
MaskedLMOutput,
|
| 17 |
+
SequenceClassifierOutput
|
| 18 |
+
)
|
| 19 |
|
| 20 |
logger = logging.get_logger(__name__)
|
| 21 |
|
|
|
|
| 155 |
|
| 156 |
class CodeSagePreTrainedModel(PreTrainedModel):
|
| 157 |
config_class = CodeSageConfig
|
| 158 |
+
base_model_prefix = "transformer"
|
| 159 |
|
| 160 |
def _init_weights(self, module):
|
| 161 |
"""Initialize the weights."""
|
|
|
|
| 282 |
)
|
| 283 |
|
| 284 |
|
| 285 |
+
class CodeSageForMaskedLM(CodeSagePreTrainedModel):
|
| 286 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 287 |
+
|
| 288 |
+
def __init__(self, config):
|
| 289 |
+
super().__init__(config)
|
| 290 |
+
self.transformer = CodeSageModel(config)
|
| 291 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 292 |
+
|
| 293 |
+
self.init_weights()
|
| 294 |
+
|
| 295 |
+
def get_output_embeddings(self):
|
| 296 |
+
return self.lm_head
|
| 297 |
+
|
| 298 |
+
def set_output_embeddings(self, new_embeddings):
|
| 299 |
+
self.lm_head = new_embeddings
|
| 300 |
+
|
| 301 |
+
def forward(
|
| 302 |
+
self,
|
| 303 |
+
input_ids=None,
|
| 304 |
+
attention_mask=None,
|
| 305 |
+
position_ids=None,
|
| 306 |
+
head_mask=None,
|
| 307 |
+
inputs_embeds=None,
|
| 308 |
+
labels=None,
|
| 309 |
+
output_attentions=None,
|
| 310 |
+
output_hidden_states=None,
|
| 311 |
+
return_dict=None
|
| 312 |
+
):
|
| 313 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 314 |
+
|
| 315 |
+
transformer_outputs = self.transformer(
|
| 316 |
+
input_ids,
|
| 317 |
+
attention_mask=attention_mask,
|
| 318 |
+
position_ids=position_ids,
|
| 319 |
+
head_mask=head_mask,
|
| 320 |
+
inputs_embeds=inputs_embeds,
|
| 321 |
+
output_attentions=output_attentions,
|
| 322 |
+
output_hidden_states=output_hidden_states,
|
| 323 |
+
return_dict=return_dict
|
| 324 |
+
)
|
| 325 |
+
hidden_states = transformer_outputs[0]
|
| 326 |
+
lm_logits = self.lm_head(hidden_states)
|
| 327 |
+
|
| 328 |
+
masked_lm_loss = None
|
| 329 |
+
if labels is not None:
|
| 330 |
+
loss_fct = CrossEntropyLoss()
|
| 331 |
+
masked_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
| 332 |
+
|
| 333 |
+
if not return_dict:
|
| 334 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 335 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 336 |
+
|
| 337 |
+
return MaskedLMOutput(
|
| 338 |
+
loss=masked_lm_loss,
|
| 339 |
+
logits=lm_logits,
|
| 340 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 341 |
+
attentions=transformer_outputs.attentions,
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
|
| 345 |
class CodeSageForSequenceClassification(CodeSagePreTrainedModel):
|
| 346 |
+
|
| 347 |
def __init__(self, config):
|
| 348 |
super().__init__(config)
|
| 349 |
self.num_labels = config.num_labels
|