Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +172 -69
sd_token_similarity_calculator.ipynb
CHANGED
@@ -116,10 +116,28 @@
|
|
116 |
"metadata": {
|
117 |
"id": "Ch9puvwKH1s3",
|
118 |
"collapsed": true,
|
119 |
-
"cellView": "form"
|
|
|
|
|
|
|
|
|
120 |
},
|
121 |
-
"execution_count":
|
122 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
},
|
124 |
{
|
125 |
"cell_type": "code",
|
@@ -272,56 +290,23 @@
|
|
272 |
"outputs": []
|
273 |
},
|
274 |
{
|
275 |
-
"cell_type": "
|
276 |
"source": [
|
277 |
-
"
|
278 |
-
"\n",
|
279 |
-
"prompt_A = \"banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
280 |
-
"prompt_B = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
281 |
-
"use_token_padding = True # @param {type:\"boolean\"}\n",
|
282 |
"\n",
|
283 |
-
"
|
284 |
-
"\n",
|
285 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
286 |
"\n",
|
287 |
-
"
|
288 |
-
"\n"
|
289 |
-
"ids_A = processor.tokenizer(text=prompt_A, padding=use_token_padding, return_tensors=\"pt\")\n",
|
290 |
-
"text_encoding_A = model.get_text_features(**ids_A)\n",
|
291 |
-
"\n",
|
292 |
-
"\n",
|
293 |
-
"ids_B = processor.tokenizer(text=prompt_B, padding=use_token_padding, return_tensors=\"pt\")\n",
|
294 |
-
"text_encoding_B = model.get_text_features(**ids_B)\n",
|
295 |
-
"\n",
|
296 |
-
"similarity_str = 'The similarity between the text_encoding for A:\"' + prompt_A + '\" and B: \"' + prompt_B +'\" is ' + token_similarity(text_encoding_A[0] , text_encoding_B[0])\n",
|
297 |
-
"\n",
|
298 |
-
"\n",
|
299 |
-
"print(similarity_str)\n",
|
300 |
-
"#outputs = model(**inputs)\n",
|
301 |
-
"#logits_per_image = outputs.logits_per_image # this is the image-text similarity score\n",
|
302 |
-
"#probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities"
|
303 |
-
],
|
304 |
-
"metadata": {
|
305 |
-
"id": "QQOjh5BvnG8M",
|
306 |
-
"collapsed": true,
|
307 |
-
"cellView": "form"
|
308 |
-
},
|
309 |
-
"execution_count": null,
|
310 |
-
"outputs": []
|
311 |
-
},
|
312 |
-
{
|
313 |
-
"cell_type": "markdown",
|
314 |
-
"source": [
|
315 |
-
"You can write an url or upload a file locally from your device to use as reference. The image will by saved in the 'sd_tokens' folder. Note that the 'sd_tokens' folder will be deleted upon exiting this runtime."
|
316 |
],
|
317 |
"metadata": {
|
318 |
-
"id": "
|
319 |
}
|
320 |
},
|
321 |
{
|
322 |
"cell_type": "code",
|
323 |
"source": [
|
324 |
-
"# @title 🪐🖼️ -> 📝 Image to prompt :
|
325 |
"from google.colab import files\n",
|
326 |
"def upload_files():\n",
|
327 |
" from google.colab import files\n",
|
@@ -331,7 +316,7 @@
|
|
331 |
" return list(uploaded.keys())\n",
|
332 |
"#Get image\n",
|
333 |
"# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n",
|
334 |
-
"url = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for local upload (scroll down to see it)\"}\n",
|
335 |
"\n",
|
336 |
"colab_image_path = \"\" # @param {\"type\":\"string\",\"placeholder\":\"(optional) Write colab image path to load from\"}\n",
|
337 |
"from PIL import Image\n",
|
@@ -369,19 +354,19 @@
|
|
369 |
"\n",
|
370 |
"# @markdown Set conditions for the output\n",
|
371 |
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
372 |
-
"must_contain = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
373 |
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
374 |
"token_B = must_contain\n",
|
375 |
"\n",
|
376 |
"# @markdown Limit the search\n",
|
377 |
"use_token_padding = True # @param {type:\"boolean\"}\n",
|
378 |
-
"start_search_at_ID =
|
379 |
-
"search_range =
|
380 |
-
"restrictions = '
|
381 |
"\n",
|
382 |
"# @markdown Limit char size of included token\n",
|
383 |
-
"min_char_size = 3 # @param {type:\"slider\", min:0, max:
|
384 |
-
"char_range =
|
385 |
"\n",
|
386 |
"#Tokenize input B\n",
|
387 |
"from transformers import AutoTokenizer\n",
|
@@ -397,14 +382,26 @@
|
|
397 |
"\n",
|
398 |
"dots = torch.zeros(RANGE)\n",
|
399 |
"is_BC = torch.zeros(RANGE)\n",
|
|
|
|
|
|
|
400 |
"for index in range(RANGE):\n",
|
401 |
" id_C = START + index\n",
|
402 |
" C = token[id_C]\n",
|
403 |
" _C = LA.vector_norm(C, ord=2)\n",
|
404 |
" name_C = vocab[id_C]\n",
|
405 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
" # Decide if we should process prefix/suffix tokens\n",
|
407 |
" if name_C.find('</w>')<=-1:\n",
|
|
|
408 |
" if restrictions != \"Prefix only\":\n",
|
409 |
" continue\n",
|
410 |
" else:\n",
|
@@ -420,8 +417,8 @@
|
|
420 |
" #-----#\n",
|
421 |
"\n",
|
422 |
" name_CB = must_start_with + name_C + name_B + must_end_with\n",
|
423 |
-
" if
|
424 |
-
" name_CB = must_start_with +
|
425 |
" #-----#\n",
|
426 |
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
427 |
" text_encoding_CB = model.get_text_features(**ids_CB)\n",
|
@@ -469,37 +466,143 @@
|
|
469 |
"print('')\n",
|
470 |
"print(f'These token pairings within the range ID = {START} to ID = {START + RANGE} most closely match the text_encoding for {prompt_A} : ')\n",
|
471 |
"print('')\n",
|
472 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
"for index in range(min(list_size,RANGE)):\n",
|
474 |
" id = START + indices[index].item()\n",
|
475 |
-
"
|
476 |
-
"
|
477 |
-
"
|
478 |
-
"
|
479 |
-
"
|
480 |
-
"
|
481 |
-
"
|
482 |
-
"
|
483 |
-
"
|
484 |
-
"
|
485 |
-
"
|
486 |
-
"
|
487 |
-
" if (print_Divider):\n",
|
488 |
-
" print('--------')\n",
|
489 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
490 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
"\n",
|
|
|
492 |
"\n",
|
493 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
],
|
495 |
"metadata": {
|
496 |
"collapsed": true,
|
497 |
-
"cellView": "form",
|
498 |
"id": "fi0jRruI0-tu"
|
499 |
},
|
500 |
"execution_count": null,
|
501 |
"outputs": []
|
502 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
{
|
504 |
"cell_type": "code",
|
505 |
"source": [
|
|
|
116 |
"metadata": {
|
117 |
"id": "Ch9puvwKH1s3",
|
118 |
"collapsed": true,
|
119 |
+
"cellView": "form",
|
120 |
+
"outputId": "aa58503f-8e68-43bf-d73b-3eb877ae10e4",
|
121 |
+
"colab": {
|
122 |
+
"base_uri": "https://localhost:8080/"
|
123 |
+
}
|
124 |
},
|
125 |
+
"execution_count": 1,
|
126 |
+
"outputs": [
|
127 |
+
{
|
128 |
+
"output_type": "stream",
|
129 |
+
"name": "stdout",
|
130 |
+
"text": [
|
131 |
+
"Cloning into 'sd_tokens'...\n",
|
132 |
+
"remote: Enumerating objects: 10, done.\u001b[K\n",
|
133 |
+
"remote: Counting objects: 100% (7/7), done.\u001b[K\n",
|
134 |
+
"remote: Compressing objects: 100% (7/7), done.\u001b[K\n",
|
135 |
+
"remote: Total 10 (delta 1), reused 0 (delta 0), pack-reused 3 (from 1)\u001b[K\n",
|
136 |
+
"Unpacking objects: 100% (10/10), 306.93 KiB | 5.48 MiB/s, done.\n",
|
137 |
+
"/content/sd_tokens\n"
|
138 |
+
]
|
139 |
+
}
|
140 |
+
]
|
141 |
},
|
142 |
{
|
143 |
"cell_type": "code",
|
|
|
290 |
"outputs": []
|
291 |
},
|
292 |
{
|
293 |
+
"cell_type": "markdown",
|
294 |
"source": [
|
295 |
+
"Below image interrogator appends CLIP tokens to either end of the 'must_contain' text , and seeks to maximize similarity with the image encoding.\n",
|
|
|
|
|
|
|
|
|
296 |
"\n",
|
297 |
+
"It takes a long while to check all the tokens (too long!) so this cell only samples a range of the 49K available tokens.\n",
|
|
|
|
|
298 |
"\n",
|
299 |
+
"You can run this cell, then paste the result into the 'must_contain' box , and then run the cell again.\n",
|
300 |
+
"\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
],
|
302 |
"metadata": {
|
303 |
+
"id": "IUCuV9RtQpBn"
|
304 |
}
|
305 |
},
|
306 |
{
|
307 |
"cell_type": "code",
|
308 |
"source": [
|
309 |
+
"# @title 🪐🖼️ -> 📝 Image to prompt : Create suggestions of things to add to prompt to match image\n",
|
310 |
"from google.colab import files\n",
|
311 |
"def upload_files():\n",
|
312 |
" from google.colab import files\n",
|
|
|
316 |
" return list(uploaded.keys())\n",
|
317 |
"#Get image\n",
|
318 |
"# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n",
|
319 |
+
"url = \"http://images.cocodataset.org/val2017/000000039769.jpg\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for local upload (scroll down to see it)\"}\n",
|
320 |
"\n",
|
321 |
"colab_image_path = \"\" # @param {\"type\":\"string\",\"placeholder\":\"(optional) Write colab image path to load from\"}\n",
|
322 |
"from PIL import Image\n",
|
|
|
354 |
"\n",
|
355 |
"# @markdown Set conditions for the output\n",
|
356 |
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
357 |
+
"must_contain = \"banana \" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
358 |
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
359 |
"token_B = must_contain\n",
|
360 |
"\n",
|
361 |
"# @markdown Limit the search\n",
|
362 |
"use_token_padding = True # @param {type:\"boolean\"}\n",
|
363 |
+
"start_search_at_ID = 27700 # @param {type:\"slider\", min:0, max: 49407, step:100}\n",
|
364 |
+
"search_range = 288 # @param {type:\"slider\", min:100, max: 2000, step:0}\n",
|
365 |
+
"restrictions = 'None' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
366 |
"\n",
|
367 |
"# @markdown Limit char size of included token\n",
|
368 |
+
"min_char_size = 3 # @param {type:\"slider\", min:0, max: 20, step:1}\n",
|
369 |
+
"char_range = 14 # @param {type:\"slider\", min:0, max: 20, step:1}\n",
|
370 |
"\n",
|
371 |
"#Tokenize input B\n",
|
372 |
"from transformers import AutoTokenizer\n",
|
|
|
382 |
"\n",
|
383 |
"dots = torch.zeros(RANGE)\n",
|
384 |
"is_BC = torch.zeros(RANGE)\n",
|
385 |
+
"\n",
|
386 |
+
"import re\n",
|
387 |
+
"\n",
|
388 |
"for index in range(RANGE):\n",
|
389 |
" id_C = START + index\n",
|
390 |
" C = token[id_C]\n",
|
391 |
" _C = LA.vector_norm(C, ord=2)\n",
|
392 |
" name_C = vocab[id_C]\n",
|
393 |
"\n",
|
394 |
+
" is_Prefix = 0\n",
|
395 |
+
"\n",
|
396 |
+
"\n",
|
397 |
+
" #Skip if non-AZ characters are found\n",
|
398 |
+
" if re.search(\"\\W/g\" , name_C.replace('</w>', '')):\n",
|
399 |
+
" continue\n",
|
400 |
+
"\n",
|
401 |
+
"\n",
|
402 |
" # Decide if we should process prefix/suffix tokens\n",
|
403 |
" if name_C.find('</w>')<=-1:\n",
|
404 |
+
" is_Prefix = 1\n",
|
405 |
" if restrictions != \"Prefix only\":\n",
|
406 |
" continue\n",
|
407 |
" else:\n",
|
|
|
417 |
" #-----#\n",
|
418 |
"\n",
|
419 |
" name_CB = must_start_with + name_C + name_B + must_end_with\n",
|
420 |
+
" if is_Prefix>0:\n",
|
421 |
+
" name_CB = must_start_with + ' ' + name_C.strip() + '-' + name_B.strip() + ' ' + must_end_with\n",
|
422 |
" #-----#\n",
|
423 |
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
424 |
" text_encoding_CB = model.get_text_features(**ids_CB)\n",
|
|
|
466 |
"print('')\n",
|
467 |
"print(f'These token pairings within the range ID = {START} to ID = {START + RANGE} most closely match the text_encoding for {prompt_A} : ')\n",
|
468 |
"print('')\n",
|
469 |
+
"#----#\n",
|
470 |
+
"aheads = \"{\"\n",
|
471 |
+
"trails = \"{\"\n",
|
472 |
+
"tmp = \"\"\n",
|
473 |
+
"#----#\n",
|
474 |
+
"max_sim_ahead = 0\n",
|
475 |
+
"max_sim_trail = 0\n",
|
476 |
+
"sim = 0\n",
|
477 |
+
"max_name_ahead = ''\n",
|
478 |
+
"max_name_trail = ''\n",
|
479 |
+
"#----#\n",
|
480 |
"for index in range(min(list_size,RANGE)):\n",
|
481 |
" id = START + indices[index].item()\n",
|
482 |
+
" name = vocab[id]\n",
|
483 |
+
" #-----#\n",
|
484 |
+
" if (name.find('</w>')<=-1):\n",
|
485 |
+
" name = name + '-'\n",
|
486 |
+
" else:\n",
|
487 |
+
" name = name.replace('</w>', ' ')\n",
|
488 |
+
" if(is_BC[index]>0):\n",
|
489 |
+
" trails = trails + name + \"|\"\n",
|
490 |
+
" else:\n",
|
491 |
+
" aheads = aheads + name + \"|\"\n",
|
492 |
+
" #----#\n",
|
493 |
+
" sim = sorted[index].item()\n",
|
|
|
|
|
494 |
"\n",
|
495 |
+
" if(is_BC[index]>0):\n",
|
496 |
+
" if sim>max_sim_ahead:\n",
|
497 |
+
" max_sim_ahead = sim\n",
|
498 |
+
" max_name_ahead = name\n",
|
499 |
+
" else:\n",
|
500 |
+
" if sim>max_sim_trail:\n",
|
501 |
+
" max_sim_trail = sim\n",
|
502 |
+
" max_name_trail = name\n",
|
503 |
"\n",
|
504 |
+
"#------#\n",
|
505 |
+
"trails = (trails + \"&&&&\").replace(\"|&&&&\", \"}\").replace(\"</w>\", \" \").replace(\"{&&&&\", \"\")\n",
|
506 |
+
"aheads = (aheads + \"&&&&\").replace(\"|&&&&\", \"}\").replace(\"</w>\", \" \").replace(\"{&&&&\", \"\")\n",
|
507 |
+
"max_sim_ahead=max_sim_ahead*100\n",
|
508 |
+
"max_sim_ahead=max_sim_trail*100\n",
|
509 |
+
"#-----#\n",
|
510 |
+
"print(f\"place these items ahead of prompt : {aheads}\")\n",
|
511 |
+
"print(\"\")\n",
|
512 |
+
"print(f\"place these items behind the prompt : {trails}\")\n",
|
513 |
+
"print(\"\")\n",
|
514 |
+
"print(f\"max_similarity = {max_sim_ahead} % when using '{max_name_ahead + must_contain}' \")\n",
|
515 |
+
"print(\"\")\n",
|
516 |
+
"print(f\"max_similarity = {max_sim_trail} % when using '{must_contain + max_name_trail}' \")\n",
|
517 |
+
"#-----#\n",
|
518 |
+
"#STEP 2\n",
|
519 |
+
"import random\n",
|
520 |
+
"\n",
|
521 |
+
"names = {}\n",
|
522 |
+
"\n",
|
523 |
+
"NUM_PERMUTATIONS = 4 # 0 1 2 3\n",
|
524 |
+
"dots = torch.zeros(NUM_PERMUTATIONS)\n",
|
525 |
+
"for index in range(NUM_PERMUTATIONS):\n",
|
526 |
+
" name = must_start_with\n",
|
527 |
+
" if index == 0 : name = name + must_contain\n",
|
528 |
+
" if index == 1 : name = name + max_name_ahead + must_contain\n",
|
529 |
+
" if index == 2 : name = name + must_contain + max_name_trail\n",
|
530 |
+
" if index == 3 : name = name + max_name_ahead + must_contain + max_name_trail\n",
|
531 |
+
" name = name + must_end_with\n",
|
532 |
+
" #----#\n",
|
533 |
+
" ids_B = processor.tokenizer(text=name, padding=use_token_padding, return_tensors=\"pt\")\n",
|
534 |
+
" text_encoding_B = model.get_text_features(**ids_B)\n",
|
535 |
+
" B = text_encoding_B[0]\n",
|
536 |
+
" _B = LA.vector_norm(B, ord=2)\n",
|
537 |
+
" dots[index] = torch.dot(A,B)/(_A*_B)\n",
|
538 |
+
" names[index] = name\n",
|
539 |
+
"#------#\n",
|
540 |
"\n",
|
541 |
+
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
542 |
"\n",
|
543 |
+
"for index in range(NUM_PERMUTATIONS):\n",
|
544 |
+
" print(names[indices[index].item()])\n",
|
545 |
+
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
|
546 |
+
" print('------')\n",
|
547 |
+
"\n",
|
548 |
+
"\n",
|
549 |
+
"\n",
|
550 |
+
""
|
551 |
],
|
552 |
"metadata": {
|
553 |
"collapsed": true,
|
|
|
554 |
"id": "fi0jRruI0-tu"
|
555 |
},
|
556 |
"execution_count": null,
|
557 |
"outputs": []
|
558 |
},
|
559 |
+
{
|
560 |
+
"cell_type": "code",
|
561 |
+
"source": [
|
562 |
+
"# @title 💫 Compare Text encodings\n",
|
563 |
+
"\n",
|
564 |
+
"prompt_A = \"banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
565 |
+
"prompt_B = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
566 |
+
"use_token_padding = True # @param {type:\"boolean\"}\n",
|
567 |
+
"\n",
|
568 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
569 |
+
"\n",
|
570 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
571 |
+
"\n",
|
572 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
573 |
+
"\n",
|
574 |
+
"ids_A = processor.tokenizer(text=prompt_A, padding=use_token_padding, return_tensors=\"pt\")\n",
|
575 |
+
"text_encoding_A = model.get_text_features(**ids_A)\n",
|
576 |
+
"\n",
|
577 |
+
"\n",
|
578 |
+
"ids_B = processor.tokenizer(text=prompt_B, padding=use_token_padding, return_tensors=\"pt\")\n",
|
579 |
+
"text_encoding_B = model.get_text_features(**ids_B)\n",
|
580 |
+
"\n",
|
581 |
+
"similarity_str = 'The similarity between the text_encoding for A:\"' + prompt_A + '\" and B: \"' + prompt_B +'\" is ' + token_similarity(text_encoding_A[0] , text_encoding_B[0])\n",
|
582 |
+
"\n",
|
583 |
+
"\n",
|
584 |
+
"print(similarity_str)\n",
|
585 |
+
"#outputs = model(**inputs)\n",
|
586 |
+
"#logits_per_image = outputs.logits_per_image # this is the image-text similarity score\n",
|
587 |
+
"#probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities"
|
588 |
+
],
|
589 |
+
"metadata": {
|
590 |
+
"id": "QQOjh5BvnG8M",
|
591 |
+
"collapsed": true,
|
592 |
+
"cellView": "form"
|
593 |
+
},
|
594 |
+
"execution_count": null,
|
595 |
+
"outputs": []
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"cell_type": "markdown",
|
599 |
+
"source": [
|
600 |
+
"You can write an url or upload a file locally from your device to use as reference. The image will by saved in the 'sd_tokens' folder. Note that the 'sd_tokens' folder will be deleted upon exiting this runtime."
|
601 |
+
],
|
602 |
+
"metadata": {
|
603 |
+
"id": "hyK423TQCRup"
|
604 |
+
}
|
605 |
+
},
|
606 |
{
|
607 |
"cell_type": "code",
|
608 |
"source": [
|