Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +436 -314
sd_token_similarity_calculator.ipynb
CHANGED
@@ -122,10 +122,30 @@
|
|
122 |
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n"
|
123 |
],
|
124 |
"metadata": {
|
125 |
-
"id": "rUXQ73IbonHY"
|
|
|
|
|
|
|
|
|
126 |
},
|
127 |
-
"execution_count":
|
128 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
},
|
130 |
{
|
131 |
"cell_type": "code",
|
@@ -209,7 +229,7 @@
|
|
209 |
"base_uri": "https://localhost:8080/"
|
210 |
}
|
211 |
},
|
212 |
-
"execution_count":
|
213 |
"outputs": [
|
214 |
{
|
215 |
"output_type": "stream",
|
@@ -487,7 +507,7 @@
|
|
487 |
"metadata": {
|
488 |
"id": "xc-PbIYF428y"
|
489 |
},
|
490 |
-
"execution_count":
|
491 |
"outputs": []
|
492 |
},
|
493 |
{
|
@@ -541,7 +561,7 @@
|
|
541 |
"base_uri": "https://localhost:8080/"
|
542 |
}
|
543 |
},
|
544 |
-
"execution_count":
|
545 |
"outputs": [
|
546 |
{
|
547 |
"output_type": "stream",
|
@@ -921,6 +941,161 @@
|
|
921 |
}
|
922 |
]
|
923 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
924 |
{
|
925 |
"cell_type": "code",
|
926 |
"source": [
|
@@ -1240,330 +1415,34 @@
|
|
1240 |
{
|
1241 |
"cell_type": "code",
|
1242 |
"source": [
|
1243 |
-
"# @title
|
1244 |
-
"
|
1245 |
-
"
|
1246 |
-
"use_token_padding = True # param {type:\"boolean\"} <----- Enabled by default\n",
|
1247 |
-
"#-----#\n",
|
1248 |
-
"from transformers import AutoTokenizer\n",
|
1249 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\",\n",
|
1250 |
-
"clean_up_tokenization_spaces = False)\n",
|
1251 |
-
"#-----#\n",
|
1252 |
-
"from transformers import CLIPProcessor, CLIPModel\n",
|
1253 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
1254 |
-
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
1255 |
-
"#----#\n",
|
1256 |
-
"inputs = tokenizer(text = prompt_A, padding=True, return_tensors=\"pt\")\n",
|
1257 |
-
"text_features_A = model.get_text_features(**inputs)\n",
|
1258 |
-
"text_features_A = text_features_A / text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
1259 |
-
"name_A = prompt_A\n",
|
1260 |
-
"#----#\n",
|
1261 |
-
"inputs = tokenizer(text = prompt_B, padding=True, return_tensors=\"pt\")\n",
|
1262 |
-
"text_features_B = model.get_text_features(**inputs)\n",
|
1263 |
-
"text_features_B = text_features_B / text_features_B.norm(p=2, dim=-1, keepdim=True)\n",
|
1264 |
-
"name_B = prompt_B\n",
|
1265 |
-
"#----#\n",
|
1266 |
-
"import torch\n",
|
1267 |
-
"sim_AB = torch.nn.functional.cosine_similarity(text_features_A, text_features_B)\n",
|
1268 |
-
"#----#\n",
|
1269 |
-
"print(f'The similarity between the text_encoding for A:\"{prompt_A}\" and B: \"{prompt_B}\" is {round(sim_AB.item()*100,2)} %')"
|
1270 |
],
|
1271 |
"metadata": {
|
1272 |
-
"id": "
|
1273 |
-
"collapsed": true,
|
1274 |
-
"cellView": "form"
|
1275 |
},
|
1276 |
"execution_count": null,
|
1277 |
"outputs": []
|
1278 |
},
|
1279 |
{
|
1280 |
-
"cell_type": "
|
1281 |
"source": [
|
1282 |
-
"# @title ⚡ Get similiar tokens (not updated yet)\n",
|
1283 |
-
"import torch\n",
|
1284 |
-
"from transformers import AutoTokenizer\n",
|
1285 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
1286 |
"\n",
|
1287 |
-
"# @markdown Write name of token to match against\n",
|
1288 |
-
"token_name = \"banana \" # @param {type:'string',\"placeholder\":\"leave empty for random value token\"}\n",
|
1289 |
"\n",
|
1290 |
-
"
|
1291 |
-
"# @markdown (optional) Mix the token with something else\n",
|
1292 |
-
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for random value token\"}\n",
|
1293 |
-
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
1294 |
-
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
1295 |
-
"# @markdown Limit char size of included token\n",
|
1296 |
"\n",
|
1297 |
-
"
|
1298 |
-
"char_range = 50 # param {type:\"slider\", min:0, max: 50, step:1}\n",
|
1299 |
"\n",
|
1300 |
-
"
|
1301 |
-
"input_ids = tokenizer_output['input_ids']\n",
|
1302 |
-
"id_A = input_ids[1]\n",
|
1303 |
-
"A = torch.tensor(token[id_A])\n",
|
1304 |
-
"A = A/A.norm(p=2, dim=-1, keepdim=True)\n",
|
1305 |
-
"#-----#\n",
|
1306 |
-
"tokenizer_output = tokenizer(text = mix_with)\n",
|
1307 |
-
"input_ids = tokenizer_output['input_ids']\n",
|
1308 |
-
"id_C = input_ids[1]\n",
|
1309 |
-
"C = torch.tensor(token[id_C])\n",
|
1310 |
-
"C = C/C.norm(p=2, dim=-1, keepdim=True)\n",
|
1311 |
-
"#-----#\n",
|
1312 |
-
"sim_AC = torch.dot(A,C)\n",
|
1313 |
-
"#-----#\n",
|
1314 |
-
"print(input_ids)\n",
|
1315 |
-
"#-----#\n",
|
1316 |
"\n",
|
1317 |
-
"
|
1318 |
-
"if (prompt == \"\"):\n",
|
1319 |
-
" id_A = -1\n",
|
1320 |
-
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
|
1321 |
-
" R = torch.rand(A.shape)\n",
|
1322 |
-
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
1323 |
-
" A = R\n",
|
1324 |
-
" name_A = 'random_A'\n",
|
1325 |
"\n",
|
1326 |
-
"
|
1327 |
-
"if (mix_with == \"\"):\n",
|
1328 |
-
" id_C = -1\n",
|
1329 |
-
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
|
1330 |
-
" R = torch.rand(A.shape)\n",
|
1331 |
-
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
1332 |
-
" C = R\n",
|
1333 |
-
" name_C = 'random_C'\n",
|
1334 |
"\n",
|
1335 |
-
"
|
1336 |
-
"if (id_A>-1):\n",
|
1337 |
-
" name_A = vocab(id_A)\n",
|
1338 |
"\n",
|
1339 |
-
"
|
1340 |
-
"if (id_C>-1):\n",
|
1341 |
-
" name_C = vocab(id_C)\n",
|
1342 |
-
"\n",
|
1343 |
-
"print(f\"The similarity between A '{name_A}' and C '{name_C}' is {round(sim_AC.item()*100,2)} %\")\n",
|
1344 |
-
"\n",
|
1345 |
-
"if (mix_method == \"None\"):\n",
|
1346 |
-
" print(\"No operation\")\n",
|
1347 |
-
"\n",
|
1348 |
-
"if (mix_method == \"Average\"):\n",
|
1349 |
-
" A = w*A + (1-w)*C\n",
|
1350 |
-
" _A = LA.vector_norm(A, ord=2)\n",
|
1351 |
-
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = w*A + (1-w)*C , where C is '{name_C}' token , for w = {w} \")\n",
|
1352 |
-
"\n",
|
1353 |
-
"if (mix_method == \"Subtract\"):\n",
|
1354 |
-
" tmp = w*A - (1-w)*C\n",
|
1355 |
-
" tmp = tmp/tmp.norm(p=2, dim=-1, keepdim=True)\n",
|
1356 |
-
" A = tmp\n",
|
1357 |
-
" #//---//\n",
|
1358 |
-
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A*norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n",
|
1359 |
-
"\n",
|
1360 |
-
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
|
1361 |
-
"\n",
|
1362 |
-
"dots = torch.zeros(NUM_TOKENS)\n",
|
1363 |
-
"for index in range(NUM_TOKENS):\n",
|
1364 |
-
" id_B = index\n",
|
1365 |
-
" B = torch.tensor(token[id_B])\n",
|
1366 |
-
" B = B/B.norm(p=2, dim=-1, keepdim=True)\n",
|
1367 |
-
" sim_AB = torch.dot(A,B)\n",
|
1368 |
-
" dots[index] = sim_AB\n",
|
1369 |
-
"\n",
|
1370 |
-
"\n",
|
1371 |
-
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
1372 |
-
"#----#\n",
|
1373 |
-
"if (mix_method == \"Average\"):\n",
|
1374 |
-
" print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
1375 |
-
"if (mix_method == \"Subtract\"):\n",
|
1376 |
-
" print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
1377 |
-
"if (mix_method == \"None\"):\n",
|
1378 |
-
" print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n",
|
1379 |
-
"\n",
|
1380 |
-
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result\n",
|
1381 |
-
"\n",
|
1382 |
-
"# @markdown Set print options\n",
|
1383 |
-
"list_size = 100 # @param {type:'number'}\n",
|
1384 |
-
"print_ID = False # @param {type:\"boolean\"}\n",
|
1385 |
-
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
1386 |
-
"print_Name = True # @param {type:\"boolean\"}\n",
|
1387 |
-
"print_Divider = True # @param {type:\"boolean\"}\n",
|
1388 |
-
"\n",
|
1389 |
-
"\n",
|
1390 |
-
"if (print_Divider):\n",
|
1391 |
-
" print('//---//')\n",
|
1392 |
-
"\n",
|
1393 |
-
"print('')\n",
|
1394 |
-
"print('Here is the result : ')\n",
|
1395 |
-
"print('')\n",
|
1396 |
-
"\n",
|
1397 |
-
"for index in range(list_size):\n",
|
1398 |
-
" id = indices[index].item()\n",
|
1399 |
-
" if (print_Name):\n",
|
1400 |
-
" print(f'{vocab(id)}') # vocab item\n",
|
1401 |
-
" if (print_ID):\n",
|
1402 |
-
" print(f'ID = {id}') # IDs\n",
|
1403 |
-
" if (print_Similarity):\n",
|
1404 |
-
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
|
1405 |
-
" if (print_Divider):\n",
|
1406 |
-
" print('--------')\n",
|
1407 |
-
"\n",
|
1408 |
-
"#Print the sorted list from above result\n",
|
1409 |
-
"\n",
|
1410 |
-
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
|
1411 |
-
"\n",
|
1412 |
-
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID.\n",
|
1413 |
-
"\n",
|
1414 |
-
"# Save results as .db file\n",
|
1415 |
-
"import shelve\n",
|
1416 |
-
"VOCAB_FILENAME = 'tokens_most_similiar_to_' + name_A.replace('</w>','').strip()\n",
|
1417 |
-
"d = shelve.open(VOCAB_FILENAME)\n",
|
1418 |
-
"#NUM TOKENS == 49407\n",
|
1419 |
-
"for index in range(NUM_TOKENS):\n",
|
1420 |
-
" #print(d[f'{index}']) #<-----Use this to read values from the .db file\n",
|
1421 |
-
" d[f'{index}']= vocab(indices[index].item()) #<---- write values to .db file\n",
|
1422 |
-
"#----#\n",
|
1423 |
-
"d.close() #close the file\n",
|
1424 |
-
"# See this link for additional stuff to do with shelve: https://docs.python.org/3/library/shelve.html"
|
1425 |
-
],
|
1426 |
-
"metadata": {
|
1427 |
-
"id": "iWeFnT1gAx6A"
|
1428 |
-
},
|
1429 |
-
"execution_count": null,
|
1430 |
-
"outputs": []
|
1431 |
-
},
|
1432 |
-
{
|
1433 |
-
"cell_type": "markdown",
|
1434 |
-
"source": [
|
1435 |
-
"You can write an url or upload a file locally from your device to use as reference. The image will by saved in the 'sd_tokens' folder. Note that the 'sd_tokens' folder will be deleted upon exiting this runtime."
|
1436 |
-
],
|
1437 |
-
"metadata": {
|
1438 |
-
"id": "hyK423TQCRup"
|
1439 |
-
}
|
1440 |
-
},
|
1441 |
-
{
|
1442 |
-
"cell_type": "code",
|
1443 |
-
"source": [
|
1444 |
-
"%cd /content/\n",
|
1445 |
-
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts"
|
1446 |
-
],
|
1447 |
-
"metadata": {
|
1448 |
-
"id": "GPAUFxZgPfrY"
|
1449 |
-
},
|
1450 |
-
"execution_count": null,
|
1451 |
-
"outputs": []
|
1452 |
-
},
|
1453 |
-
{
|
1454 |
-
"cell_type": "code",
|
1455 |
-
"source": [
|
1456 |
-
"# @title Make your own text_encodings .pt file for later use (using GPU is recommended to speed things up)\n",
|
1457 |
-
"\n",
|
1458 |
-
"import json\n",
|
1459 |
-
"import pandas as pd\n",
|
1460 |
-
"import os\n",
|
1461 |
-
"import shelve\n",
|
1462 |
-
"import torch\n",
|
1463 |
-
"from safetensors.torch import save_file\n",
|
1464 |
-
"\n",
|
1465 |
-
"def my_mkdirs(folder):\n",
|
1466 |
-
" if os.path.exists(folder)==False:\n",
|
1467 |
-
" os.makedirs(folder)\n",
|
1468 |
-
"\n",
|
1469 |
-
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
1470 |
-
"from transformers import AutoTokenizer\n",
|
1471 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
1472 |
-
"from transformers import CLIPProcessor, CLIPModel\n",
|
1473 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
1474 |
-
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\").to(device)\n",
|
1475 |
-
"\n",
|
1476 |
-
"%cd /content/\n",
|
1477 |
-
"\n",
|
1478 |
-
"my_mkdirs('/content/text_encodings/')\n",
|
1479 |
-
"filename = ''\n",
|
1480 |
-
"\n",
|
1481 |
-
"NUM_FILES = 10\n",
|
1482 |
-
"\n",
|
1483 |
-
"for file_index in range(NUM_FILES + 1):\n",
|
1484 |
-
" if file_index <1: continue\n",
|
1485 |
-
" #if file_index >4: break\n",
|
1486 |
-
" filename = f'🧿📘 fusion-t2i-civitai-0-20-chars-mix-{file_index}'\n",
|
1487 |
-
" #🦜 fusion-t2i-prompt-features-1.json\n",
|
1488 |
-
"\n",
|
1489 |
-
" # Read suffix.json\n",
|
1490 |
-
" %cd /content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
1491 |
-
" with open(filename + '.json', 'r') as f:\n",
|
1492 |
-
" data = json.load(f)\n",
|
1493 |
-
" _df = pd.DataFrame({'count': data})['count']\n",
|
1494 |
-
" prompts = {\n",
|
1495 |
-
" key : value for key, value in _df.items()\n",
|
1496 |
-
" }\n",
|
1497 |
-
" NUM_ITEMS = int(prompts[\"0\"])\n",
|
1498 |
-
" #------#\n",
|
1499 |
-
"\n",
|
1500 |
-
" # Calculate text_encoding for .json file contents and results as .db file\n",
|
1501 |
-
"\n",
|
1502 |
-
" %cd /content/text_encodings/\n",
|
1503 |
-
" text_encoding_dict = {}\n",
|
1504 |
-
" for index in range(NUM_ITEMS + 1):\n",
|
1505 |
-
" inputs = tokenizer(text = '' + prompts[f'{index}'], padding=True, return_tensors=\"pt\").to(device)\n",
|
1506 |
-
" text_features = model.get_text_features(**inputs).to(device)\n",
|
1507 |
-
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True).to(device)\n",
|
1508 |
-
" text_encoding_dict[f'{index}'] = text_features.to('cpu')\n",
|
1509 |
-
" save_file(text_encoding_dict, f'{filename}.safetensors')\n",
|
1510 |
-
" #----#\n",
|
1511 |
-
"\n",
|
1512 |
-
"#from safetensors.torch import load_file\n",
|
1513 |
-
"#%cd /content/text_encodings\n",
|
1514 |
-
"#loaded = load_file('🦜 fusion-t2i-prompt-features-1.safetensors')\n",
|
1515 |
-
"#print(loaded[\"325\"])"
|
1516 |
-
],
|
1517 |
-
"metadata": {
|
1518 |
-
"id": "9ZiTsF9jV0TV"
|
1519 |
-
},
|
1520 |
-
"execution_count": null,
|
1521 |
-
"outputs": []
|
1522 |
-
},
|
1523 |
-
{
|
1524 |
-
"cell_type": "code",
|
1525 |
-
"source": [
|
1526 |
-
"# @title Download the created JSON as .zip file\n",
|
1527 |
-
"%cd /content/\n",
|
1528 |
-
"!zip -r /content/blue.zip /content/text-to-image-prompts/civitai-prompts/blue/text"
|
1529 |
-
],
|
1530 |
-
"metadata": {
|
1531 |
-
"id": "gX-sHZPWj4Lt"
|
1532 |
-
},
|
1533 |
-
"execution_count": null,
|
1534 |
-
"outputs": []
|
1535 |
-
},
|
1536 |
-
{
|
1537 |
-
"cell_type": "code",
|
1538 |
-
"source": [
|
1539 |
-
"# @title Download the created text_encodings as .zip file\n",
|
1540 |
-
"%cd /content/\n",
|
1541 |
-
"!zip -r /content/text-encodings.zip /content/text_encodings"
|
1542 |
-
],
|
1543 |
-
"metadata": {
|
1544 |
-
"id": "b3DUPYfskAIc"
|
1545 |
-
},
|
1546 |
-
"execution_count": null,
|
1547 |
-
"outputs": []
|
1548 |
-
},
|
1549 |
-
{
|
1550 |
-
"cell_type": "markdown",
|
1551 |
-
"source": [
|
1552 |
-
"\n",
|
1553 |
-
"\n",
|
1554 |
-
"# How does this notebook work?\n",
|
1555 |
-
"\n",
|
1556 |
-
"Similiar vectors = similiar output in the SD 1.5 / SDXL / FLUX model\n",
|
1557 |
-
"\n",
|
1558 |
-
"CLIP converts the prompt text to vectors (“tensors”) , with float32 values usually ranging from -1 to 1.\n",
|
1559 |
-
"\n",
|
1560 |
-
"Dimensions are \\[ 1x768 ] tensors for SD 1.5 , and a \\[ 1x768 , 1x1024 ] tensor for SDXL and FLUX.\n",
|
1561 |
-
"\n",
|
1562 |
-
"The SD models and FLUX converts these vectors to an image.\n",
|
1563 |
-
"\n",
|
1564 |
-
"This notebook takes an input string , tokenizes it and matches the first token against the 49407 token vectors in the vocab.json : [https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main/tokenizer](https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fblack-forest-labs%2FFLUX.1-dev%2Ftree%2Fmain%2Ftokenizer)\n",
|
1565 |
-
"\n",
|
1566 |
-
"It finds the “most similiar tokens” in the list. Similarity is the theta angle between the token vectors.\n",
|
1567 |
"\n",
|
1568 |
"<div>\n",
|
1569 |
"<img src=\"https://huggingface.co/datasets/codeShare/sd_tokens/resolve/main/cosine.jpeg\" width=\"300\"/>\n",
|
@@ -1956,6 +1835,249 @@
|
|
1956 |
},
|
1957 |
"execution_count": null,
|
1958 |
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1959 |
}
|
1960 |
]
|
1961 |
}
|
|
|
122 |
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n"
|
123 |
],
|
124 |
"metadata": {
|
125 |
+
"id": "rUXQ73IbonHY",
|
126 |
+
"outputId": "aa0e25d1-f6b8-46ad-c1c1-0ccd70952cff",
|
127 |
+
"colab": {
|
128 |
+
"base_uri": "https://localhost:8080/"
|
129 |
+
}
|
130 |
},
|
131 |
+
"execution_count": 1,
|
132 |
+
"outputs": [
|
133 |
+
{
|
134 |
+
"output_type": "stream",
|
135 |
+
"name": "stdout",
|
136 |
+
"text": [
|
137 |
+
"/content\n",
|
138 |
+
"Cloning into 'text-to-image-prompts'...\n",
|
139 |
+
"remote: Enumerating objects: 478, done.\u001b[K\n",
|
140 |
+
"remote: Counting objects: 100% (475/475), done.\u001b[K\n",
|
141 |
+
"remote: Compressing objects: 100% (452/452), done.\u001b[K\n",
|
142 |
+
"remote: Total 478 (delta 82), reused 0 (delta 0), pack-reused 3 (from 1)\u001b[K\n",
|
143 |
+
"Receiving objects: 100% (478/478), 1.93 MiB | 6.96 MiB/s, done.\n",
|
144 |
+
"Resolving deltas: 100% (82/82), done.\n",
|
145 |
+
"Filtering content: 100% (95/95), 305.98 MiB | 59.56 MiB/s, done.\n"
|
146 |
+
]
|
147 |
+
}
|
148 |
+
]
|
149 |
},
|
150 |
{
|
151 |
"cell_type": "code",
|
|
|
229 |
"base_uri": "https://localhost:8080/"
|
230 |
}
|
231 |
},
|
232 |
+
"execution_count": null,
|
233 |
"outputs": [
|
234 |
{
|
235 |
"output_type": "stream",
|
|
|
507 |
"metadata": {
|
508 |
"id": "xc-PbIYF428y"
|
509 |
},
|
510 |
+
"execution_count": null,
|
511 |
"outputs": []
|
512 |
},
|
513 |
{
|
|
|
561 |
"base_uri": "https://localhost:8080/"
|
562 |
}
|
563 |
},
|
564 |
+
"execution_count": null,
|
565 |
"outputs": [
|
566 |
{
|
567 |
"output_type": "stream",
|
|
|
941 |
}
|
942 |
]
|
943 |
},
|
944 |
+
{
|
945 |
+
"cell_type": "code",
|
946 |
+
"source": [
|
947 |
+
"# @title 💫 Compare Text encodings\n",
|
948 |
+
"prompt_A = \"banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
949 |
+
"prompt_B = \"bike \" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
950 |
+
"use_token_padding = True # param {type:\"boolean\"} <----- Enabled by default\n",
|
951 |
+
"#-----#\n",
|
952 |
+
"from transformers import AutoTokenizer\n",
|
953 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\",\n",
|
954 |
+
"clean_up_tokenization_spaces = False)\n",
|
955 |
+
"#-----#\n",
|
956 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
957 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
958 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
959 |
+
"#----#\n",
|
960 |
+
"inputs = tokenizer(text = prompt_A, padding=True, return_tensors=\"pt\")\n",
|
961 |
+
"text_features_A = model.get_text_features(**inputs)\n",
|
962 |
+
"text_features_A = text_features_A / text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
963 |
+
"name_A = prompt_A\n",
|
964 |
+
"#----#\n",
|
965 |
+
"inputs = tokenizer(text = prompt_B, padding=True, return_tensors=\"pt\")\n",
|
966 |
+
"text_features_B = model.get_text_features(**inputs)\n",
|
967 |
+
"text_features_B = text_features_B / text_features_B.norm(p=2, dim=-1, keepdim=True)\n",
|
968 |
+
"name_B = prompt_B\n",
|
969 |
+
"#----#\n",
|
970 |
+
"import torch\n",
|
971 |
+
"sim_AB = torch.nn.functional.cosine_similarity(text_features_A, text_features_B)\n",
|
972 |
+
"#----#\n",
|
973 |
+
"print(f'The similarity between the text_encoding for A:\"{prompt_A}\" and B: \"{prompt_B}\" is {round(sim_AB.item()*100,2)} %')"
|
974 |
+
],
|
975 |
+
"metadata": {
|
976 |
+
"id": "QQOjh5BvnG8M",
|
977 |
+
"collapsed": true,
|
978 |
+
"cellView": "form"
|
979 |
+
},
|
980 |
+
"execution_count": null,
|
981 |
+
"outputs": []
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"cell_type": "markdown",
|
985 |
+
"source": [
|
986 |
+
"You can write an url or upload a file locally from your device to use as reference. The image will by saved in the 'sd_tokens' folder. Note that the 'sd_tokens' folder will be deleted upon exiting this runtime."
|
987 |
+
],
|
988 |
+
"metadata": {
|
989 |
+
"id": "hyK423TQCRup"
|
990 |
+
}
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"cell_type": "code",
|
994 |
+
"source": [
|
995 |
+
"%cd /content/\n",
|
996 |
+
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts"
|
997 |
+
],
|
998 |
+
"metadata": {
|
999 |
+
"id": "GPAUFxZgPfrY"
|
1000 |
+
},
|
1001 |
+
"execution_count": null,
|
1002 |
+
"outputs": []
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"cell_type": "code",
|
1006 |
+
"source": [
|
1007 |
+
"# @title Make your own text_encodings .pt file for later use (using GPU is recommended to speed things up)\n",
|
1008 |
+
"\n",
|
1009 |
+
"import json\n",
|
1010 |
+
"import pandas as pd\n",
|
1011 |
+
"import os\n",
|
1012 |
+
"import shelve\n",
|
1013 |
+
"import torch\n",
|
1014 |
+
"from safetensors.torch import save_file\n",
|
1015 |
+
"\n",
|
1016 |
+
"def my_mkdirs(folder):\n",
|
1017 |
+
" if os.path.exists(folder)==False:\n",
|
1018 |
+
" os.makedirs(folder)\n",
|
1019 |
+
"\n",
|
1020 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
1021 |
+
"from transformers import AutoTokenizer\n",
|
1022 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
1023 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
1024 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
1025 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\").to(device)\n",
|
1026 |
+
"\n",
|
1027 |
+
"%cd /content/\n",
|
1028 |
+
"\n",
|
1029 |
+
"my_mkdirs('/content/text_encodings/')\n",
|
1030 |
+
"filename = ''\n",
|
1031 |
+
"\n",
|
1032 |
+
"NUM_FILES = 9\n",
|
1033 |
+
"\n",
|
1034 |
+
"\n",
|
1035 |
+
"filename = '🆔👩_🦰 fusion-t2i-girl-firstname-1'\n",
|
1036 |
+
"%cd /content/text-to-image-prompts/names/firstnames/text\n",
|
1037 |
+
"with open(filename + '.json', 'r') as f:\n",
|
1038 |
+
" data = json.load(f)\n",
|
1039 |
+
"_df = pd.DataFrame({'count': data})['count']\n",
|
1040 |
+
"firstname = {\n",
|
1041 |
+
" key : value for key, value in _df.items()\n",
|
1042 |
+
"}\n",
|
1043 |
+
"\n",
|
1044 |
+
"NUM_FIRSTNAME = 100901\n",
|
1045 |
+
"\n",
|
1046 |
+
"for file_index in range(NUM_FILES + 1):\n",
|
1047 |
+
" if file_index <1: continue\n",
|
1048 |
+
" #if file_index >4: break\n",
|
1049 |
+
" filename = f'👱_♀️ fusion-t2i-lastnames-1 plugin-{file_index}'\n",
|
1050 |
+
" #🦜 fusion-t2i-prompt-features-1.json\n",
|
1051 |
+
"\n",
|
1052 |
+
" # Read suffix.json\n",
|
1053 |
+
" %cd /content/text-to-image-prompts/names/lastnames/text\n",
|
1054 |
+
" with open(filename + '.json', 'r') as f:\n",
|
1055 |
+
" data = json.load(f)\n",
|
1056 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
1057 |
+
" names = {\n",
|
1058 |
+
" key : firstname[f'{random.randint(2,NUM_FIRSTNAME)}'] + f'{value}' for key, value in _df.items()\n",
|
1059 |
+
" }\n",
|
1060 |
+
" NUM_ITEMS = int(prompts[\"0\"])\n",
|
1061 |
+
" #------#\n",
|
1062 |
+
"\n",
|
1063 |
+
" # Calculate text_encoding for .json file contents and results as .db file\n",
|
1064 |
+
"\n",
|
1065 |
+
" %cd /content/text_encodings/\n",
|
1066 |
+
" text_encoding_dict = {}\n",
|
1067 |
+
" for index in range(NUM_ITEMS + 1):\n",
|
1068 |
+
" inputs = tokenizer(text = '' + prompts[f'{index}'], padding=True, return_tensors=\"pt\").to(device)\n",
|
1069 |
+
" text_features = model.get_text_features(**inputs).to(device)\n",
|
1070 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True).to(device)\n",
|
1071 |
+
" text_encoding_dict[f'{index}'] = text_features.to('cpu')\n",
|
1072 |
+
" save_file(text_encoding_dict, f'{filename}.safetensors')\n",
|
1073 |
+
" #----#\n",
|
1074 |
+
"\n",
|
1075 |
+
"#from safetensors.torch import load_file\n",
|
1076 |
+
"#%cd /content/text_encodings\n",
|
1077 |
+
"#loaded = load_file('🦜 fusion-t2i-prompt-features-1.safetensors')\n",
|
1078 |
+
"#print(loaded[\"325\"])"
|
1079 |
+
],
|
1080 |
+
"metadata": {
|
1081 |
+
"id": "9ZiTsF9jV0TV"
|
1082 |
+
},
|
1083 |
+
"execution_count": null,
|
1084 |
+
"outputs": []
|
1085 |
+
},
|
1086 |
+
{
|
1087 |
+
"cell_type": "code",
|
1088 |
+
"source": [
|
1089 |
+
"# @title Download the created JSON as .zip file\n",
|
1090 |
+
"%cd /content/\n",
|
1091 |
+
"!zip -r /content/blue.zip /content/text-to-image-prompts/civitai-prompts/blue/text"
|
1092 |
+
],
|
1093 |
+
"metadata": {
|
1094 |
+
"id": "gX-sHZPWj4Lt"
|
1095 |
+
},
|
1096 |
+
"execution_count": null,
|
1097 |
+
"outputs": []
|
1098 |
+
},
|
1099 |
{
|
1100 |
"cell_type": "code",
|
1101 |
"source": [
|
|
|
1415 |
{
|
1416 |
"cell_type": "code",
|
1417 |
"source": [
|
1418 |
+
"# @title Download the created text_encodings as .zip file\n",
|
1419 |
+
"%cd /content/\n",
|
1420 |
+
"!zip -r /content/text-encodings.zip /content/text_encodings"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1421 |
],
|
1422 |
"metadata": {
|
1423 |
+
"id": "b3DUPYfskAIc"
|
|
|
|
|
1424 |
},
|
1425 |
"execution_count": null,
|
1426 |
"outputs": []
|
1427 |
},
|
1428 |
{
|
1429 |
+
"cell_type": "markdown",
|
1430 |
"source": [
|
|
|
|
|
|
|
|
|
1431 |
"\n",
|
|
|
|
|
1432 |
"\n",
|
1433 |
+
"# How does this notebook work?\n",
|
|
|
|
|
|
|
|
|
|
|
1434 |
"\n",
|
1435 |
+
"Similiar vectors = similiar output in the SD 1.5 / SDXL / FLUX model\n",
|
|
|
1436 |
"\n",
|
1437 |
+
"CLIP converts the prompt text to vectors (“tensors”) , with float32 values usually ranging from -1 to 1.\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1438 |
"\n",
|
1439 |
+
"Dimensions are \\[ 1x768 ] tensors for SD 1.5 , and a \\[ 1x768 , 1x1024 ] tensor for SDXL and FLUX.\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1440 |
"\n",
|
1441 |
+
"The SD models and FLUX converts these vectors to an image.\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1442 |
"\n",
|
1443 |
+
"This notebook takes an input string , tokenizes it and matches the first token against the 49407 token vectors in the vocab.json : [https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main/tokenizer](https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fblack-forest-labs%2FFLUX.1-dev%2Ftree%2Fmain%2Ftokenizer)\n",
|
|
|
|
|
1444 |
"\n",
|
1445 |
+
"It finds the “most similiar tokens” in the list. Similarity is the theta angle between the token vectors.\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1446 |
"\n",
|
1447 |
"<div>\n",
|
1448 |
"<img src=\"https://huggingface.co/datasets/codeShare/sd_tokens/resolve/main/cosine.jpeg\" width=\"300\"/>\n",
|
|
|
1835 |
},
|
1836 |
"execution_count": null,
|
1837 |
"outputs": []
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"cell_type": "code",
|
1841 |
+
"source": [
|
1842 |
+
"# @title ⚡ Get similiar tokens (not updated yet)\n",
|
1843 |
+
"import torch\n",
|
1844 |
+
"from transformers import AutoTokenizer\n",
|
1845 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
1846 |
+
"\n",
|
1847 |
+
"# @markdown Write name of token to match against\n",
|
1848 |
+
"token_name = \"banana \" # @param {type:'string',\"placeholder\":\"leave empty for random value token\"}\n",
|
1849 |
+
"\n",
|
1850 |
+
"prompt = token_name\n",
|
1851 |
+
"# @markdown (optional) Mix the token with something else\n",
|
1852 |
+
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for random value token\"}\n",
|
1853 |
+
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
1854 |
+
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
1855 |
+
"# @markdown Limit char size of included token\n",
|
1856 |
+
"\n",
|
1857 |
+
"min_char_size = 0 # param {type:\"slider\", min:0, max: 50, step:1}\n",
|
1858 |
+
"char_range = 50 # param {type:\"slider\", min:0, max: 50, step:1}\n",
|
1859 |
+
"\n",
|
1860 |
+
"tokenizer_output = tokenizer(text = prompt)\n",
|
1861 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
1862 |
+
"id_A = input_ids[1]\n",
|
1863 |
+
"A = torch.tensor(token[id_A])\n",
|
1864 |
+
"A = A/A.norm(p=2, dim=-1, keepdim=True)\n",
|
1865 |
+
"#-----#\n",
|
1866 |
+
"tokenizer_output = tokenizer(text = mix_with)\n",
|
1867 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
1868 |
+
"id_C = input_ids[1]\n",
|
1869 |
+
"C = torch.tensor(token[id_C])\n",
|
1870 |
+
"C = C/C.norm(p=2, dim=-1, keepdim=True)\n",
|
1871 |
+
"#-----#\n",
|
1872 |
+
"sim_AC = torch.dot(A,C)\n",
|
1873 |
+
"#-----#\n",
|
1874 |
+
"print(input_ids)\n",
|
1875 |
+
"#-----#\n",
|
1876 |
+
"\n",
|
1877 |
+
"#if no imput exists we just randomize the entire thing\n",
|
1878 |
+
"if (prompt == \"\"):\n",
|
1879 |
+
" id_A = -1\n",
|
1880 |
+
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
|
1881 |
+
" R = torch.rand(A.shape)\n",
|
1882 |
+
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
1883 |
+
" A = R\n",
|
1884 |
+
" name_A = 'random_A'\n",
|
1885 |
+
"\n",
|
1886 |
+
"#if no imput exists we just randomize the entire thing\n",
|
1887 |
+
"if (mix_with == \"\"):\n",
|
1888 |
+
" id_C = -1\n",
|
1889 |
+
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
|
1890 |
+
" R = torch.rand(A.shape)\n",
|
1891 |
+
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
1892 |
+
" C = R\n",
|
1893 |
+
" name_C = 'random_C'\n",
|
1894 |
+
"\n",
|
1895 |
+
"name_A = \"A of random type\"\n",
|
1896 |
+
"if (id_A>-1):\n",
|
1897 |
+
" name_A = vocab(id_A)\n",
|
1898 |
+
"\n",
|
1899 |
+
"name_C = \"token C of random type\"\n",
|
1900 |
+
"if (id_C>-1):\n",
|
1901 |
+
" name_C = vocab(id_C)\n",
|
1902 |
+
"\n",
|
1903 |
+
"print(f\"The similarity between A '{name_A}' and C '{name_C}' is {round(sim_AC.item()*100,2)} %\")\n",
|
1904 |
+
"\n",
|
1905 |
+
"if (mix_method == \"None\"):\n",
|
1906 |
+
" print(\"No operation\")\n",
|
1907 |
+
"\n",
|
1908 |
+
"if (mix_method == \"Average\"):\n",
|
1909 |
+
" A = w*A + (1-w)*C\n",
|
1910 |
+
" _A = LA.vector_norm(A, ord=2)\n",
|
1911 |
+
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = w*A + (1-w)*C , where C is '{name_C}' token , for w = {w} \")\n",
|
1912 |
+
"\n",
|
1913 |
+
"if (mix_method == \"Subtract\"):\n",
|
1914 |
+
" tmp = w*A - (1-w)*C\n",
|
1915 |
+
" tmp = tmp/tmp.norm(p=2, dim=-1, keepdim=True)\n",
|
1916 |
+
" A = tmp\n",
|
1917 |
+
" #//---//\n",
|
1918 |
+
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A*norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n",
|
1919 |
+
"\n",
|
1920 |
+
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
|
1921 |
+
"\n",
|
1922 |
+
"dots = torch.zeros(NUM_TOKENS)\n",
|
1923 |
+
"for index in range(NUM_TOKENS):\n",
|
1924 |
+
" id_B = index\n",
|
1925 |
+
" B = torch.tensor(token[id_B])\n",
|
1926 |
+
" B = B/B.norm(p=2, dim=-1, keepdim=True)\n",
|
1927 |
+
" sim_AB = torch.dot(A,B)\n",
|
1928 |
+
" dots[index] = sim_AB\n",
|
1929 |
+
"\n",
|
1930 |
+
"\n",
|
1931 |
+
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
1932 |
+
"#----#\n",
|
1933 |
+
"if (mix_method == \"Average\"):\n",
|
1934 |
+
" print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
1935 |
+
"if (mix_method == \"Subtract\"):\n",
|
1936 |
+
" print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
1937 |
+
"if (mix_method == \"None\"):\n",
|
1938 |
+
" print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n",
|
1939 |
+
"\n",
|
1940 |
+
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result\n",
|
1941 |
+
"\n",
|
1942 |
+
"# @markdown Set print options\n",
|
1943 |
+
"list_size = 100 # @param {type:'number'}\n",
|
1944 |
+
"print_ID = False # @param {type:\"boolean\"}\n",
|
1945 |
+
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
1946 |
+
"print_Name = True # @param {type:\"boolean\"}\n",
|
1947 |
+
"print_Divider = True # @param {type:\"boolean\"}\n",
|
1948 |
+
"\n",
|
1949 |
+
"\n",
|
1950 |
+
"if (print_Divider):\n",
|
1951 |
+
" print('//---//')\n",
|
1952 |
+
"\n",
|
1953 |
+
"print('')\n",
|
1954 |
+
"print('Here is the result : ')\n",
|
1955 |
+
"print('')\n",
|
1956 |
+
"\n",
|
1957 |
+
"for index in range(list_size):\n",
|
1958 |
+
" id = indices[index].item()\n",
|
1959 |
+
" if (print_Name):\n",
|
1960 |
+
" print(f'{vocab(id)}') # vocab item\n",
|
1961 |
+
" if (print_ID):\n",
|
1962 |
+
" print(f'ID = {id}') # IDs\n",
|
1963 |
+
" if (print_Similarity):\n",
|
1964 |
+
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
|
1965 |
+
" if (print_Divider):\n",
|
1966 |
+
" print('--------')\n",
|
1967 |
+
"\n",
|
1968 |
+
"#Print the sorted list from above result\n",
|
1969 |
+
"\n",
|
1970 |
+
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
|
1971 |
+
"\n",
|
1972 |
+
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID.\n",
|
1973 |
+
"\n",
|
1974 |
+
"# Save results as .db file\n",
|
1975 |
+
"import shelve\n",
|
1976 |
+
"VOCAB_FILENAME = 'tokens_most_similiar_to_' + name_A.replace('</w>','').strip()\n",
|
1977 |
+
"d = shelve.open(VOCAB_FILENAME)\n",
|
1978 |
+
"#NUM TOKENS == 49407\n",
|
1979 |
+
"for index in range(NUM_TOKENS):\n",
|
1980 |
+
" #print(d[f'{index}']) #<-----Use this to read values from the .db file\n",
|
1981 |
+
" d[f'{index}']= vocab(indices[index].item()) #<---- write values to .db file\n",
|
1982 |
+
"#----#\n",
|
1983 |
+
"d.close() #close the file\n",
|
1984 |
+
"# See this link for additional stuff to do with shelve: https://docs.python.org/3/library/shelve.html"
|
1985 |
+
],
|
1986 |
+
"metadata": {
|
1987 |
+
"id": "iWeFnT1gAx6A"
|
1988 |
+
},
|
1989 |
+
"execution_count": null,
|
1990 |
+
"outputs": []
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"cell_type": "code",
|
1994 |
+
"source": [
|
1995 |
+
"\n",
|
1996 |
+
"# @title Create random names from firstname and lastnames\n",
|
1997 |
+
"import random\n",
|
1998 |
+
"import json\n",
|
1999 |
+
"import pandas as pd\n",
|
2000 |
+
"import os\n",
|
2001 |
+
"import shelve\n",
|
2002 |
+
"import torch\n",
|
2003 |
+
"from safetensors.torch import save_file\n",
|
2004 |
+
"\n",
|
2005 |
+
"def my_mkdirs(folder):\n",
|
2006 |
+
" if os.path.exists(folder)==False:\n",
|
2007 |
+
" os.makedirs(folder)\n",
|
2008 |
+
"\n",
|
2009 |
+
"\n",
|
2010 |
+
"my_mkdirs('/content/female_full_names/')\n",
|
2011 |
+
"filename = ''\n",
|
2012 |
+
"\n",
|
2013 |
+
"filename = '🆔👩_🦰 fusion-t2i-girl-firstname-1'\n",
|
2014 |
+
"%cd /content/text-to-image-prompts/names/firstnames/text\n",
|
2015 |
+
"with open(filename + '.json', 'r') as f:\n",
|
2016 |
+
" data = json.load(f)\n",
|
2017 |
+
"_df = pd.DataFrame({'count': data})['count']\n",
|
2018 |
+
"firstname = {\n",
|
2019 |
+
" key : value for key, value in _df.items()\n",
|
2020 |
+
"}\n",
|
2021 |
+
"\n",
|
2022 |
+
"NUM_FIRSTNAME = 100901\n",
|
2023 |
+
"\n",
|
2024 |
+
"\n",
|
2025 |
+
"NUM_FILES = 9\n",
|
2026 |
+
"for file_index in range(NUM_FILES + 1):\n",
|
2027 |
+
" if file_index <1: continue\n",
|
2028 |
+
" #if file_index >4: break\n",
|
2029 |
+
" filename = f'👱_♀️ fusion-t2i-lastnames-{file_index} plugin'\n",
|
2030 |
+
" #🦜 fusion-t2i-prompt-features-1.json\n",
|
2031 |
+
"\n",
|
2032 |
+
" # Read suffix.json\n",
|
2033 |
+
" %cd /content/text-to-image-prompts/names/lastnames/text\n",
|
2034 |
+
" with open(filename + '.json', 'r') as f:\n",
|
2035 |
+
" data = json.load(f)\n",
|
2036 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
2037 |
+
" names = {\n",
|
2038 |
+
" key : firstname[f'{random.randint(2,NUM_FIRSTNAME)}'] + ' ' f'{value}' + ' ' for key, value in _df.items()\n",
|
2039 |
+
" }\n",
|
2040 |
+
"\n",
|
2041 |
+
" index = 0\n",
|
2042 |
+
"\n",
|
2043 |
+
" for key in names:\n",
|
2044 |
+
" index = index + 1\n",
|
2045 |
+
" #-----#\n",
|
2046 |
+
"\n",
|
2047 |
+
" names[f'{1}'] = f'👱_♀️female_fullnames-{file_index}'\n",
|
2048 |
+
" names[f'{0}'] = f'{index}'\n",
|
2049 |
+
"\n",
|
2050 |
+
" txt_filename = f'👱_♀️female_fullnames-{file_index}'\n",
|
2051 |
+
" %cd /content/female_full_names/\n",
|
2052 |
+
" with open(txt_filename + '.txt', 'w') as f:\n",
|
2053 |
+
" f.write(str(names))\n",
|
2054 |
+
"\n",
|
2055 |
+
" #files.download(f'fullnames-{file_index}.txt')\n",
|
2056 |
+
"\n",
|
2057 |
+
"#firstname[f'{random.randint(2,NUM_FIRSTNAME)}'] + f'{value}'\n",
|
2058 |
+
"\n",
|
2059 |
+
" #------#\n",
|
2060 |
+
"\n",
|
2061 |
+
"\n"
|
2062 |
+
],
|
2063 |
+
"metadata": {
|
2064 |
+
"id": "JR0wl2ecj6RJ"
|
2065 |
+
},
|
2066 |
+
"execution_count": null,
|
2067 |
+
"outputs": []
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"cell_type": "code",
|
2071 |
+
"source": [
|
2072 |
+
"# @title Download the created text_encodings as .zip file\n",
|
2073 |
+
"%cd /content/\n",
|
2074 |
+
"!zip -r /content/female_full_names.zip /content/female_full_names/"
|
2075 |
+
],
|
2076 |
+
"metadata": {
|
2077 |
+
"id": "IBenvYVrofil"
|
2078 |
+
},
|
2079 |
+
"execution_count": null,
|
2080 |
+
"outputs": []
|
2081 |
}
|
2082 |
]
|
2083 |
}
|