Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +435 -538
sd_token_similarity_calculator.ipynb
CHANGED
@@ -115,27 +115,49 @@
|
|
115 |
" tensAB[f'{nA + int(key)}'] = tensB[key]\n",
|
116 |
" #-----#\n",
|
117 |
" return dictAB, tensAB , nAB-1\n",
|
118 |
-
"#-------#\n"
|
|
|
|
|
|
|
|
|
119 |
],
|
120 |
"metadata": {
|
121 |
-
"id": "rUXQ73IbonHY"
|
|
|
|
|
|
|
|
|
122 |
},
|
123 |
-
"execution_count":
|
124 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
},
|
126 |
{
|
127 |
"cell_type": "code",
|
128 |
"source": [
|
129 |
"# @title ✳️ Select items for the vocab\n",
|
130 |
-
"
|
|
|
|
|
131 |
"suffix = True # @param {\"type\":\"boolean\",\"placeholder\":\"🔹\"}\n",
|
132 |
-
"prefix =
|
133 |
"debug = False\n",
|
134 |
"\n",
|
135 |
-
"#🔸🔹\n",
|
136 |
-
"%cd /content/\n",
|
137 |
-
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n",
|
138 |
-
"\n",
|
139 |
"#------#\n",
|
140 |
"prompts = {}\n",
|
141 |
"text_encodings = {}\n",
|
@@ -150,6 +172,14 @@
|
|
150 |
" print(text_encodings[f'{nA}'])\n",
|
151 |
"#--------#\n",
|
152 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
"if suffix :\n",
|
154 |
" tmp = '/content/text-to-image-prompts/tokens/suffix/'\n",
|
155 |
" for item in ['common','average','rare','weird','exotic'] :\n",
|
@@ -183,121 +213,47 @@
|
|
183 |
],
|
184 |
"metadata": {
|
185 |
"id": "ZMG4CThUAmwW",
|
186 |
-
"outputId": "
|
187 |
"colab": {
|
188 |
"base_uri": "https://localhost:8080/"
|
189 |
}
|
190 |
},
|
191 |
-
"execution_count":
|
192 |
"outputs": [
|
193 |
{
|
194 |
"output_type": "stream",
|
195 |
"name": "stdout",
|
196 |
"text": [
|
197 |
-
"
|
198 |
-
"
|
199 |
-
"
|
200 |
-
"
|
201 |
-
"/content/text-to-image-prompts/civitai-prompts/
|
202 |
-
"
|
203 |
-
"
|
204 |
-
"/content/text-to-image-prompts/civitai-prompts/
|
205 |
-
"
|
206 |
-
"
|
207 |
-
"/content/text-to-image-prompts/civitai-prompts/
|
208 |
-
"
|
209 |
-
"
|
210 |
-
"/content/text-to-image-prompts/civitai-prompts/
|
211 |
-
"
|
212 |
-
"
|
213 |
-
"/content/text-to-image-prompts/civitai-prompts/
|
214 |
-
"
|
215 |
-
"
|
216 |
-
"/content/text-to-image-prompts/civitai-prompts/
|
217 |
-
"
|
218 |
-
"
|
219 |
-
"/content/text-to-image-prompts/civitai-prompts/
|
220 |
-
"
|
221 |
-
"
|
222 |
-
"/content/text-to-image-prompts/civitai-prompts/
|
223 |
-
"
|
224 |
-
"
|
225 |
-
"/content/text-to-image-prompts/civitai-prompts/
|
226 |
-
"
|
227 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
228 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
229 |
-
"reading 🦜 fusion-t2i-prompt-features-31.json....\n",
|
230 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
231 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
232 |
-
"reading 🦜 fusion-t2i-prompt-features-3.json....\n",
|
233 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
234 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
235 |
-
"reading 🦜 fusion-t2i-prompt-features-8.json....\n",
|
236 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
237 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
238 |
-
"reading 🦜 fusion-t2i-prompt-features-7.json....\n",
|
239 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
240 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
241 |
-
"reading 🦜 fusion-t2i-prompt-features-13.json....\n",
|
242 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
243 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
244 |
-
"reading 🦜 fusion-t2i-prompt-features-34.json....\n",
|
245 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
246 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
247 |
-
"reading 🦜 fusion-t2i-prompt-features-14.json....\n",
|
248 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
249 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
250 |
-
"reading 🦜 fusion-t2i-prompt-features-12.json....\n",
|
251 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
252 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
253 |
-
"reading 🦜 fusion-t2i-prompt-features-17.json....\n",
|
254 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
255 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
256 |
-
"reading 🦜 fusion-t2i-prompt-features-21.json....\n",
|
257 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
258 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
259 |
-
"reading 🦜 fusion-t2i-prompt-features-24.json....\n",
|
260 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
261 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
262 |
-
"reading 🦜 fusion-t2i-prompt-features-32.json....\n",
|
263 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
264 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
265 |
-
"reading 🦜 fusion-t2i-prompt-features-5.json....\n",
|
266 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
267 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
268 |
-
"reading 🦜 fusion-t2i-prompt-features-20.json....\n",
|
269 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
270 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
271 |
-
"reading 🦜 fusion-t2i-prompt-features-16.json....\n",
|
272 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
273 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
274 |
-
"reading 🦜 fusion-t2i-prompt-features-28.json....\n",
|
275 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
276 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
277 |
-
"reading 🦜 fusion-t2i-prompt-features-10.json....\n",
|
278 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
279 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
280 |
-
"reading 🦜 fusion-t2i-prompt-features-15.json....\n",
|
281 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
282 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
283 |
-
"reading 🦜 fusion-t2i-prompt-features-26.json....\n",
|
284 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
285 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
286 |
-
"reading 🦜 fusion-t2i-prompt-features-27.json....\n",
|
287 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
288 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
289 |
-
"reading 🦜 fusion-t2i-prompt-features-1.json....\n",
|
290 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
291 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
292 |
-
"reading 🦜 fusion-t2i-prompt-features-29.json....\n",
|
293 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
294 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
295 |
-
"reading 🦜 fusion-t2i-prompt-features-30.json....\n",
|
296 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
297 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
298 |
-
"reading 🦜 fusion-t2i-prompt-features-11.json....\n",
|
299 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text\n",
|
300 |
-
"/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n",
|
301 |
"reading 🔹 fusion-t2i-sd15-clip-tokens-common-suffix-5 Tokens.json....\n",
|
302 |
"/content/text-to-image-prompts/tokens/suffix/common/text\n",
|
303 |
"/content/text-to-image-prompts/tokens/suffix/common/text_encodings\n",
|
@@ -399,52 +355,7 @@
|
|
399 |
"/content/text-to-image-prompts/tokens/suffix/exotic/text_encodings\n",
|
400 |
"reading 🔹 fusion-t2i-sd15-clip-tokens-exotic-suffix-5 Tokens.json....\n",
|
401 |
"/content/text-to-image-prompts/tokens/suffix/exotic/text\n",
|
402 |
-
"/content/text-to-image-prompts/tokens/suffix/exotic/text_encodings\n"
|
403 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-common-prefix-1 Tokens.json....\n",
|
404 |
-
"/content/text-to-image-prompts/tokens/prefix/common/text\n",
|
405 |
-
"/content/text-to-image-prompts/tokens/prefix/common/text_encodings\n",
|
406 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-common-prefix-3 Tokens.json....\n",
|
407 |
-
"/content/text-to-image-prompts/tokens/prefix/common/text\n",
|
408 |
-
"/content/text-to-image-prompts/tokens/prefix/common/text_encodings\n",
|
409 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-common-prefix-2 Tokens.json....\n",
|
410 |
-
"/content/text-to-image-prompts/tokens/prefix/common/text\n",
|
411 |
-
"/content/text-to-image-prompts/tokens/prefix/common/text_encodings\n",
|
412 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-average-prefix-3 Tokens.json....\n",
|
413 |
-
"/content/text-to-image-prompts/tokens/prefix/average/text\n",
|
414 |
-
"/content/text-to-image-prompts/tokens/prefix/average/text_encodings\n",
|
415 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-average-prefix-2 Tokens.json....\n",
|
416 |
-
"/content/text-to-image-prompts/tokens/prefix/average/text\n",
|
417 |
-
"/content/text-to-image-prompts/tokens/prefix/average/text_encodings\n",
|
418 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-average-prefix-1 Tokens.json....\n",
|
419 |
-
"/content/text-to-image-prompts/tokens/prefix/average/text\n",
|
420 |
-
"/content/text-to-image-prompts/tokens/prefix/average/text_encodings\n",
|
421 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-rare-prefix-1 Tokens.json....\n",
|
422 |
-
"/content/text-to-image-prompts/tokens/prefix/rare/text\n",
|
423 |
-
"/content/text-to-image-prompts/tokens/prefix/rare/text_encodings\n",
|
424 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-rare-prefix-3 Tokens.json....\n",
|
425 |
-
"/content/text-to-image-prompts/tokens/prefix/rare/text\n",
|
426 |
-
"/content/text-to-image-prompts/tokens/prefix/rare/text_encodings\n",
|
427 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-rare-prefix-2 Tokens.json....\n",
|
428 |
-
"/content/text-to-image-prompts/tokens/prefix/rare/text\n",
|
429 |
-
"/content/text-to-image-prompts/tokens/prefix/rare/text_encodings\n",
|
430 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-weird-prefix-1 Tokens.json....\n",
|
431 |
-
"/content/text-to-image-prompts/tokens/prefix/weird/text\n",
|
432 |
-
"/content/text-to-image-prompts/tokens/prefix/weird/text_encodings\n",
|
433 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-weird-prefix-3 Tokens.json....\n",
|
434 |
-
"/content/text-to-image-prompts/tokens/prefix/weird/text\n",
|
435 |
-
"/content/text-to-image-prompts/tokens/prefix/weird/text_encodings\n",
|
436 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-weird-prefix-2 Tokens.json....\n",
|
437 |
-
"/content/text-to-image-prompts/tokens/prefix/weird/text\n",
|
438 |
-
"/content/text-to-image-prompts/tokens/prefix/weird/text_encodings\n",
|
439 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-exotic-prefix-1 Tokens.json....\n",
|
440 |
-
"/content/text-to-image-prompts/tokens/prefix/exotic/text\n",
|
441 |
-
"/content/text-to-image-prompts/tokens/prefix/exotic/text_encodings\n",
|
442 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-exotic-prefix-2 Tokens.json....\n",
|
443 |
-
"/content/text-to-image-prompts/tokens/prefix/exotic/text\n",
|
444 |
-
"/content/text-to-image-prompts/tokens/prefix/exotic/text_encodings\n",
|
445 |
-
"reading 🔸 fusion-t2i-sd15-clip-tokens-exotic-prefix-3 Tokens.json....\n",
|
446 |
-
"/content/text-to-image-prompts/tokens/prefix/exotic/text\n",
|
447 |
-
"/content/text-to-image-prompts/tokens/prefix/exotic/text_encodings\n"
|
448 |
]
|
449 |
}
|
450 |
]
|
@@ -480,7 +391,7 @@
|
|
480 |
"metadata": {
|
481 |
"id": "xc-PbIYF428y"
|
482 |
},
|
483 |
-
"execution_count":
|
484 |
"outputs": []
|
485 |
},
|
486 |
{
|
@@ -529,117 +440,117 @@
|
|
529 |
],
|
530 |
"metadata": {
|
531 |
"id": "_vnVbxcFf7WV",
|
532 |
-
"outputId": "
|
533 |
"colab": {
|
534 |
"base_uri": "https://localhost:8080/"
|
535 |
}
|
536 |
},
|
537 |
-
"execution_count":
|
538 |
"outputs": [
|
539 |
{
|
540 |
"output_type": "stream",
|
541 |
"name": "stdout",
|
542 |
"text": [
|
543 |
-
"{
|
544 |
-
"
|
545 |
-
"
|
546 |
-
"
|
547 |
-
"
|
548 |
-
"
|
549 |
-
"
|
550 |
-
"
|
551 |
-
"
|
552 |
-
"traffic-|\n",
|
553 |
-
"driver-|\n",
|
554 |
-
"thats-|\n",
|
555 |
-
"roadto-|\n",
|
556 |
-
"slow-|\n",
|
557 |
-
"cause-|\n",
|
558 |
-
"cruise-|\n",
|
559 |
-
"cyber car looking_upscenery</w>|\n",
|
560 |
-
"cyber car looking_upscenery</w>|\n",
|
561 |
-
"travel-|\n",
|
562 |
-
"truck-|\n",
|
563 |
-
"car-|\n",
|
564 |
-
"that-|\n",
|
565 |
-
"destination-|\n",
|
566 |
-
"way-|\n",
|
567 |
-
"a beautiful</w>|\n",
|
568 |
-
"a beautiful</w>|\n",
|
569 |
-
"just-|\n",
|
570 |
-
"grat-|\n",
|
571 |
-
"rolling-|\n",
|
572 |
-
"simply-|\n",
|
573 |
-
"cruis-|\n",
|
574 |
"speed</w>|\n",
|
575 |
-
"something-|\n",
|
576 |
-
"cool-|\n",
|
577 |
"roadtrip</w>|\n",
|
578 |
-
"onlyin-|\n",
|
579 |
-
"random-|\n",
|
580 |
-
"because-|\n",
|
581 |
-
"carr-|\n",
|
582 |
-
"shre-|\n",
|
583 |
"driving</w>|\n",
|
584 |
-
"
|
585 |
-
"street
|
586 |
-
"dding-|\n",
|
587 |
-
"aand-|\n",
|
588 |
"ontheroad</w>|\n",
|
589 |
-
"
|
590 |
-
"
|
591 |
-
"
|
592 |
-
"
|
593 |
-
"
|
594 |
-
"wait-|\n",
|
595 |
-
"on the crowded streets</w>|\n",
|
596 |
-
"haun-|\n",
|
597 |
-
"epic-|\n",
|
598 |
-
"lest-|\n",
|
599 |
"faster</w>|\n",
|
600 |
-
"
|
601 |
-
"
|
602 |
-
"
|
603 |
-
"
|
604 |
-
"
|
605 |
-
"
|
606 |
-
"
|
607 |
-
"
|
608 |
-
"
|
609 |
-
"
|
610 |
-
"
|
611 |
-
"
|
612 |
-
"
|
613 |
-
"
|
614 |
-
"
|
615 |
-
"
|
616 |
-
"
|
617 |
-
"
|
618 |
-
"
|
619 |
-
"
|
620 |
-
"
|
621 |
-
"
|
622 |
-
"
|
623 |
-
"
|
624 |
-
"
|
625 |
-
"
|
626 |
-
"
|
627 |
-
"
|
628 |
-
"
|
629 |
-
"
|
630 |
-
"
|
631 |
-
"
|
632 |
-
"
|
633 |
-
"
|
634 |
-
"
|
635 |
-
"
|
636 |
-
"
|
637 |
-
"
|
638 |
-
"
|
639 |
-
"
|
640 |
-
"
|
641 |
-
"
|
642 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
643 |
]
|
644 |
}
|
645 |
]
|
@@ -700,13 +611,13 @@
|
|
700 |
],
|
701 |
"metadata": {
|
702 |
"id": "ke6mZ1RZDOeB",
|
703 |
-
"outputId": "
|
704 |
"colab": {
|
705 |
"base_uri": "https://localhost:8080/",
|
706 |
"height": 1000
|
707 |
}
|
708 |
},
|
709 |
-
"execution_count":
|
710 |
"outputs": [
|
711 |
{
|
712 |
"output_type": "display_data",
|
@@ -750,7 +661,7 @@
|
|
750 |
"metadata": {
|
751 |
"id": "rebogpoyOG8k"
|
752 |
},
|
753 |
-
"execution_count":
|
754 |
"outputs": []
|
755 |
},
|
756 |
{
|
@@ -758,7 +669,7 @@
|
|
758 |
"source": [
|
759 |
"# @title 🖼️ Print the results\n",
|
760 |
"list_size = 100 # @param {type:'number'}\n",
|
761 |
-
"start_at_index =
|
762 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
763 |
"print_Prompts = True # @param {type:\"boolean\"}\n",
|
764 |
"print_Prefix = True # @param {type:\"boolean\"}\n",
|
@@ -802,271 +713,118 @@
|
|
802 |
"colab": {
|
803 |
"base_uri": "https://localhost:8080/"
|
804 |
},
|
805 |
-
"outputId": "
|
806 |
},
|
807 |
-
"execution_count":
|
808 |
"outputs": [
|
809 |
{
|
810 |
"output_type": "stream",
|
811 |
"name": "stdout",
|
812 |
"text": [
|
813 |
-
"{
|
814 |
-
"
|
815 |
-
"
|
816 |
-
"
|
817 |
-
"
|
818 |
-
"
|
819 |
-
"
|
820 |
-
"
|
821 |
-
"
|
822 |
-
"
|
823 |
-
"
|
824 |
-
"
|
825 |
-
"
|
826 |
-
"
|
827 |
-
"
|
828 |
-
"
|
829 |
-
"
|
830 |
-
"
|
831 |
-
"
|
832 |
-
"
|
833 |
-
"
|
834 |
-
"
|
835 |
-
"
|
836 |
-
"
|
837 |
-
"
|
838 |
-
"
|
839 |
-
"
|
840 |
-
"
|
841 |
-
"
|
842 |
-
"
|
843 |
-
"
|
844 |
-
"
|
845 |
-
"
|
846 |
-
"
|
847 |
-
"
|
848 |
-
"
|
849 |
-
"
|
850 |
-
"
|
851 |
-
"
|
852 |
-
"
|
853 |
-
"
|
854 |
-
"
|
855 |
-
"
|
856 |
-
"
|
857 |
-
"
|
858 |
-
"
|
859 |
-
"
|
860 |
-
"
|
861 |
-
"
|
862 |
-
"
|
863 |
-
"
|
864 |
-
"
|
865 |
-
"
|
866 |
-
"
|
867 |
-
"
|
868 |
-
"
|
869 |
-
"
|
870 |
-
"
|
871 |
-
"
|
872 |
-
"
|
873 |
-
"
|
874 |
-
"
|
875 |
-
"
|
876 |
-
"
|
877 |
-
"
|
878 |
-
"
|
879 |
-
"
|
880 |
-
"
|
881 |
-
"
|
882 |
-
"
|
883 |
-
"
|
884 |
-
"
|
885 |
-
"
|
886 |
-
"
|
887 |
-
"
|
888 |
-
"
|
889 |
-
"
|
890 |
-
"
|
891 |
-
"
|
892 |
-
"
|
893 |
-
"
|
894 |
-
"
|
895 |
-
"
|
896 |
-
"
|
897 |
-
"
|
898 |
-
"
|
899 |
-
"
|
900 |
-
"
|
901 |
-
"
|
902 |
-
"
|
903 |
-
"
|
904 |
-
"
|
905 |
-
"
|
906 |
-
"
|
907 |
-
"
|
908 |
-
"
|
909 |
-
"
|
910 |
-
"
|
911 |
-
"
|
912 |
-
"
|
913 |
]
|
914 |
}
|
915 |
]
|
916 |
},
|
917 |
-
{
|
918 |
-
"cell_type": "code",
|
919 |
-
"source": [
|
920 |
-
"# @title ⚡ Get similiar tokens (not updated yet)\n",
|
921 |
-
"import torch\n",
|
922 |
-
"from transformers import AutoTokenizer\n",
|
923 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
924 |
-
"\n",
|
925 |
-
"# @markdown Write name of token to match against\n",
|
926 |
-
"token_name = \"banana \" # @param {type:'string',\"placeholder\":\"leave empty for random value token\"}\n",
|
927 |
-
"\n",
|
928 |
-
"prompt = token_name\n",
|
929 |
-
"# @markdown (optional) Mix the token with something else\n",
|
930 |
-
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for random value token\"}\n",
|
931 |
-
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
932 |
-
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
933 |
-
"# @markdown Limit char size of included token\n",
|
934 |
-
"\n",
|
935 |
-
"min_char_size = 0 # param {type:\"slider\", min:0, max: 50, step:1}\n",
|
936 |
-
"char_range = 50 # param {type:\"slider\", min:0, max: 50, step:1}\n",
|
937 |
-
"\n",
|
938 |
-
"tokenizer_output = tokenizer(text = prompt)\n",
|
939 |
-
"input_ids = tokenizer_output['input_ids']\n",
|
940 |
-
"id_A = input_ids[1]\n",
|
941 |
-
"A = torch.tensor(token[id_A])\n",
|
942 |
-
"A = A/A.norm(p=2, dim=-1, keepdim=True)\n",
|
943 |
-
"#-----#\n",
|
944 |
-
"tokenizer_output = tokenizer(text = mix_with)\n",
|
945 |
-
"input_ids = tokenizer_output['input_ids']\n",
|
946 |
-
"id_C = input_ids[1]\n",
|
947 |
-
"C = torch.tensor(token[id_C])\n",
|
948 |
-
"C = C/C.norm(p=2, dim=-1, keepdim=True)\n",
|
949 |
-
"#-----#\n",
|
950 |
-
"sim_AC = torch.dot(A,C)\n",
|
951 |
-
"#-----#\n",
|
952 |
-
"print(input_ids)\n",
|
953 |
-
"#-----#\n",
|
954 |
-
"\n",
|
955 |
-
"#if no imput exists we just randomize the entire thing\n",
|
956 |
-
"if (prompt == \"\"):\n",
|
957 |
-
" id_A = -1\n",
|
958 |
-
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
|
959 |
-
" R = torch.rand(A.shape)\n",
|
960 |
-
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
961 |
-
" A = R\n",
|
962 |
-
" name_A = 'random_A'\n",
|
963 |
-
"\n",
|
964 |
-
"#if no imput exists we just randomize the entire thing\n",
|
965 |
-
"if (mix_with == \"\"):\n",
|
966 |
-
" id_C = -1\n",
|
967 |
-
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
|
968 |
-
" R = torch.rand(A.shape)\n",
|
969 |
-
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
970 |
-
" C = R\n",
|
971 |
-
" name_C = 'random_C'\n",
|
972 |
-
"\n",
|
973 |
-
"name_A = \"A of random type\"\n",
|
974 |
-
"if (id_A>-1):\n",
|
975 |
-
" name_A = vocab(id_A)\n",
|
976 |
-
"\n",
|
977 |
-
"name_C = \"token C of random type\"\n",
|
978 |
-
"if (id_C>-1):\n",
|
979 |
-
" name_C = vocab(id_C)\n",
|
980 |
-
"\n",
|
981 |
-
"print(f\"The similarity between A '{name_A}' and C '{name_C}' is {round(sim_AC.item()*100,2)} %\")\n",
|
982 |
-
"\n",
|
983 |
-
"if (mix_method == \"None\"):\n",
|
984 |
-
" print(\"No operation\")\n",
|
985 |
-
"\n",
|
986 |
-
"if (mix_method == \"Average\"):\n",
|
987 |
-
" A = w*A + (1-w)*C\n",
|
988 |
-
" _A = LA.vector_norm(A, ord=2)\n",
|
989 |
-
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = w*A + (1-w)*C , where C is '{name_C}' token , for w = {w} \")\n",
|
990 |
-
"\n",
|
991 |
-
"if (mix_method == \"Subtract\"):\n",
|
992 |
-
" tmp = w*A - (1-w)*C\n",
|
993 |
-
" tmp = tmp/tmp.norm(p=2, dim=-1, keepdim=True)\n",
|
994 |
-
" A = tmp\n",
|
995 |
-
" #//---//\n",
|
996 |
-
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A*norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n",
|
997 |
-
"\n",
|
998 |
-
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
|
999 |
-
"\n",
|
1000 |
-
"dots = torch.zeros(NUM_TOKENS)\n",
|
1001 |
-
"for index in range(NUM_TOKENS):\n",
|
1002 |
-
" id_B = index\n",
|
1003 |
-
" B = torch.tensor(token[id_B])\n",
|
1004 |
-
" B = B/B.norm(p=2, dim=-1, keepdim=True)\n",
|
1005 |
-
" sim_AB = torch.dot(A,B)\n",
|
1006 |
-
" dots[index] = sim_AB\n",
|
1007 |
-
"\n",
|
1008 |
-
"\n",
|
1009 |
-
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
1010 |
-
"#----#\n",
|
1011 |
-
"if (mix_method == \"Average\"):\n",
|
1012 |
-
" print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
1013 |
-
"if (mix_method == \"Subtract\"):\n",
|
1014 |
-
" print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
1015 |
-
"if (mix_method == \"None\"):\n",
|
1016 |
-
" print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n",
|
1017 |
-
"\n",
|
1018 |
-
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result\n",
|
1019 |
-
"\n",
|
1020 |
-
"# @markdown Set print options\n",
|
1021 |
-
"list_size = 100 # @param {type:'number'}\n",
|
1022 |
-
"print_ID = False # @param {type:\"boolean\"}\n",
|
1023 |
-
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
1024 |
-
"print_Name = True # @param {type:\"boolean\"}\n",
|
1025 |
-
"print_Divider = True # @param {type:\"boolean\"}\n",
|
1026 |
-
"\n",
|
1027 |
-
"\n",
|
1028 |
-
"if (print_Divider):\n",
|
1029 |
-
" print('//---//')\n",
|
1030 |
-
"\n",
|
1031 |
-
"print('')\n",
|
1032 |
-
"print('Here is the result : ')\n",
|
1033 |
-
"print('')\n",
|
1034 |
-
"\n",
|
1035 |
-
"for index in range(list_size):\n",
|
1036 |
-
" id = indices[index].item()\n",
|
1037 |
-
" if (print_Name):\n",
|
1038 |
-
" print(f'{vocab(id)}') # vocab item\n",
|
1039 |
-
" if (print_ID):\n",
|
1040 |
-
" print(f'ID = {id}') # IDs\n",
|
1041 |
-
" if (print_Similarity):\n",
|
1042 |
-
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
|
1043 |
-
" if (print_Divider):\n",
|
1044 |
-
" print('--------')\n",
|
1045 |
-
"\n",
|
1046 |
-
"#Print the sorted list from above result\n",
|
1047 |
-
"\n",
|
1048 |
-
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
|
1049 |
-
"\n",
|
1050 |
-
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID.\n",
|
1051 |
-
"\n",
|
1052 |
-
"# Save results as .db file\n",
|
1053 |
-
"import shelve\n",
|
1054 |
-
"VOCAB_FILENAME = 'tokens_most_similiar_to_' + name_A.replace('</w>','').strip()\n",
|
1055 |
-
"d = shelve.open(VOCAB_FILENAME)\n",
|
1056 |
-
"#NUM TOKENS == 49407\n",
|
1057 |
-
"for index in range(NUM_TOKENS):\n",
|
1058 |
-
" #print(d[f'{index}']) #<-----Use this to read values from the .db file\n",
|
1059 |
-
" d[f'{index}']= vocab(indices[index].item()) #<---- write values to .db file\n",
|
1060 |
-
"#----#\n",
|
1061 |
-
"d.close() #close the file\n",
|
1062 |
-
"# See this link for additional stuff to do with shelve: https://docs.python.org/3/library/shelve.html"
|
1063 |
-
],
|
1064 |
-
"metadata": {
|
1065 |
-
"id": "iWeFnT1gAx6A"
|
1066 |
-
},
|
1067 |
-
"execution_count": null,
|
1068 |
-
"outputs": []
|
1069 |
-
},
|
1070 |
{
|
1071 |
"cell_type": "code",
|
1072 |
"source": [
|
@@ -1383,20 +1141,6 @@
|
|
1383 |
"execution_count": null,
|
1384 |
"outputs": []
|
1385 |
},
|
1386 |
-
{
|
1387 |
-
"cell_type": "code",
|
1388 |
-
"source": [
|
1389 |
-
"# @title (Optional) ⚡Actively set which Vocab list to use for the interrogator\n",
|
1390 |
-
"token_name = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a token_name used earlier\"}\n",
|
1391 |
-
"VOCAB_FILENAME = 'tokens_most_similiar_to_' + token_name.replace('</w>','').strip()\n",
|
1392 |
-
"print(f'Using a vocab ordered to most similiar to the token {token_name}')"
|
1393 |
-
],
|
1394 |
-
"metadata": {
|
1395 |
-
"id": "FYa96UCQuE1U"
|
1396 |
-
},
|
1397 |
-
"execution_count": null,
|
1398 |
-
"outputs": []
|
1399 |
-
},
|
1400 |
{
|
1401 |
"cell_type": "code",
|
1402 |
"source": [
|
@@ -1436,6 +1180,159 @@
|
|
1436 |
"execution_count": null,
|
1437 |
"outputs": []
|
1438 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1439 |
{
|
1440 |
"cell_type": "markdown",
|
1441 |
"source": [
|
@@ -1485,16 +1382,16 @@
|
|
1485 |
"my_mkdirs('/content/text_encodings/')\n",
|
1486 |
"filename = ''\n",
|
1487 |
"\n",
|
1488 |
-
"NUM_FILES =
|
1489 |
"\n",
|
1490 |
"for file_index in range(NUM_FILES + 1):\n",
|
1491 |
" if file_index <1: continue\n",
|
1492 |
" #if file_index >4: break\n",
|
1493 |
-
" filename = f'
|
1494 |
" #🦜 fusion-t2i-prompt-features-1.json\n",
|
1495 |
"\n",
|
1496 |
" # Read suffix.json\n",
|
1497 |
-
" %cd /content/text-to-image-prompts/
|
1498 |
" with open(filename + '.json', 'r') as f:\n",
|
1499 |
" data = json.load(f)\n",
|
1500 |
" _df = pd.DataFrame({'count': data})['count']\n",
|
@@ -1530,9 +1427,9 @@
|
|
1530 |
{
|
1531 |
"cell_type": "code",
|
1532 |
"source": [
|
1533 |
-
"# @title Download the created
|
1534 |
"%cd /content/\n",
|
1535 |
-
"!zip -r /content/
|
1536 |
],
|
1537 |
"metadata": {
|
1538 |
"id": "gX-sHZPWj4Lt"
|
|
|
115 |
" tensAB[f'{nA + int(key)}'] = tensB[key]\n",
|
116 |
" #-----#\n",
|
117 |
" return dictAB, tensAB , nAB-1\n",
|
118 |
+
"#-------#\n",
|
119 |
+
"\n",
|
120 |
+
"#🔸🔹\n",
|
121 |
+
"%cd /content/\n",
|
122 |
+
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n"
|
123 |
],
|
124 |
"metadata": {
|
125 |
+
"id": "rUXQ73IbonHY",
|
126 |
+
"outputId": "9e40d8a1-fbb3-4200-fc80-3d6f32d3667a",
|
127 |
+
"colab": {
|
128 |
+
"base_uri": "https://localhost:8080/"
|
129 |
+
}
|
130 |
},
|
131 |
+
"execution_count": 1,
|
132 |
+
"outputs": [
|
133 |
+
{
|
134 |
+
"output_type": "stream",
|
135 |
+
"name": "stdout",
|
136 |
+
"text": [
|
137 |
+
"/content\n",
|
138 |
+
"Cloning into 'text-to-image-prompts'...\n",
|
139 |
+
"remote: Enumerating objects: 450, done.\u001b[K\n",
|
140 |
+
"remote: Counting objects: 100% (447/447), done.\u001b[K\n",
|
141 |
+
"remote: Compressing objects: 100% (428/428), done.\u001b[K\n",
|
142 |
+
"remote: Total 450 (delta 81), reused 0 (delta 0), pack-reused 3 (from 1)\u001b[K\n",
|
143 |
+
"Receiving objects: 100% (450/450), 998.98 KiB | 3.92 MiB/s, done.\n",
|
144 |
+
"Resolving deltas: 100% (81/81), done.\n",
|
145 |
+
"Filtering content: 100% (95/95), 305.98 MiB | 41.88 MiB/s, done.\n"
|
146 |
+
]
|
147 |
+
}
|
148 |
+
]
|
149 |
},
|
150 |
{
|
151 |
"cell_type": "code",
|
152 |
"source": [
|
153 |
"# @title ✳️ Select items for the vocab\n",
|
154 |
+
"\n",
|
155 |
+
"prompt_features = False # @param {\"type\":\"boolean\",\"placeholder\":\"🦜\"}\n",
|
156 |
+
"civitai_blue_set = True # @param {\"type\":\"boolean\",\"placeholder\":\"📘\"}\n",
|
157 |
"suffix = True # @param {\"type\":\"boolean\",\"placeholder\":\"🔹\"}\n",
|
158 |
+
"prefix = False # @param {\"type\":\"boolean\",\"placeholder\":\"🔸\"}\n",
|
159 |
"debug = False\n",
|
160 |
"\n",
|
|
|
|
|
|
|
|
|
161 |
"#------#\n",
|
162 |
"prompts = {}\n",
|
163 |
"text_encodings = {}\n",
|
|
|
172 |
" print(text_encodings[f'{nA}'])\n",
|
173 |
"#--------#\n",
|
174 |
"\n",
|
175 |
+
"if civitai_blue_set:\n",
|
176 |
+
" url = '/content/text-to-image-prompts/civitai-prompts/blue'\n",
|
177 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
178 |
+
" if debug:\n",
|
179 |
+
" print(prompts[f'{nA}'])\n",
|
180 |
+
" print(text_encodings[f'{nA}'])\n",
|
181 |
+
"#--------#\n",
|
182 |
+
"\n",
|
183 |
"if suffix :\n",
|
184 |
" tmp = '/content/text-to-image-prompts/tokens/suffix/'\n",
|
185 |
" for item in ['common','average','rare','weird','exotic'] :\n",
|
|
|
213 |
],
|
214 |
"metadata": {
|
215 |
"id": "ZMG4CThUAmwW",
|
216 |
+
"outputId": "dfb5a625-72e7-462e-c118-682f0a45ed12",
|
217 |
"colab": {
|
218 |
"base_uri": "https://localhost:8080/"
|
219 |
}
|
220 |
},
|
221 |
+
"execution_count": 17,
|
222 |
"outputs": [
|
223 |
{
|
224 |
"output_type": "stream",
|
225 |
"name": "stdout",
|
226 |
"text": [
|
227 |
+
"reading 🧿📘 fusion-t2i-civitai-0-20-chars-mix-2.json....\n",
|
228 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
229 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n",
|
230 |
+
"reading 🧿📘 fusion-t2i-civitai-0-20-chars-mix-10.json....\n",
|
231 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
232 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n",
|
233 |
+
"reading 🧿📘 fusion-t2i-civitai-0-20-chars-mix-6.json....\n",
|
234 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
235 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n",
|
236 |
+
"reading 🧿📘 fusion-t2i-civitai-0-20-chars-mix-5.json....\n",
|
237 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
238 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n",
|
239 |
+
"reading 🧿📘 fusion-t2i-civitai-0-20-chars-mix-4.json....\n",
|
240 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
241 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n",
|
242 |
+
"reading 🧿📘 fusion-t2i-civitai-0-20-chars-mix-8.json....\n",
|
243 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
244 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n",
|
245 |
+
"reading 🧿📘 fusion-t2i-civitai-0-20-chars-mix-1.json....\n",
|
246 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
247 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n",
|
248 |
+
"reading 🧿📘 fusion-t2i-civitai-0-20-chars-mix-7.json....\n",
|
249 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
250 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n",
|
251 |
+
"reading 🧿📘 fusion-t2i-civitai-0-20-chars-mix-3.json....\n",
|
252 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
253 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n",
|
254 |
+
"reading 🧿📘 fusion-t2i-civitai-0-20-chars-mix-9.json....\n",
|
255 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
256 |
+
"/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
"reading 🔹 fusion-t2i-sd15-clip-tokens-common-suffix-5 Tokens.json....\n",
|
258 |
"/content/text-to-image-prompts/tokens/suffix/common/text\n",
|
259 |
"/content/text-to-image-prompts/tokens/suffix/common/text_encodings\n",
|
|
|
355 |
"/content/text-to-image-prompts/tokens/suffix/exotic/text_encodings\n",
|
356 |
"reading 🔹 fusion-t2i-sd15-clip-tokens-exotic-suffix-5 Tokens.json....\n",
|
357 |
"/content/text-to-image-prompts/tokens/suffix/exotic/text\n",
|
358 |
+
"/content/text-to-image-prompts/tokens/suffix/exotic/text_encodings\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
]
|
360 |
}
|
361 |
]
|
|
|
391 |
"metadata": {
|
392 |
"id": "xc-PbIYF428y"
|
393 |
},
|
394 |
+
"execution_count": 18,
|
395 |
"outputs": []
|
396 |
},
|
397 |
{
|
|
|
440 |
],
|
441 |
"metadata": {
|
442 |
"id": "_vnVbxcFf7WV",
|
443 |
+
"outputId": "47f6617b-752b-4349-a2bd-46fdae985572",
|
444 |
"colab": {
|
445 |
"base_uri": "https://localhost:8080/"
|
446 |
}
|
447 |
},
|
448 |
+
"execution_count": 19,
|
449 |
"outputs": [
|
450 |
{
|
451 |
"output_type": "stream",
|
452 |
"name": "stdout",
|
453 |
"text": [
|
454 |
+
"{Sports Car|\n",
|
455 |
+
"beautiful car|\n",
|
456 |
+
"road nature|\n",
|
457 |
+
"running road|\n",
|
458 |
+
"sport car petite|\n",
|
459 |
+
"it's a gas gas|\n",
|
460 |
+
"The Road Not Taken|\n",
|
461 |
+
"road Horizon|\n",
|
462 |
+
"far away|\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
463 |
"speed</w>|\n",
|
|
|
|
|
464 |
"roadtrip</w>|\n",
|
|
|
|
|
|
|
|
|
|
|
465 |
"driving</w>|\n",
|
466 |
+
"true to life|\n",
|
467 |
+
"street|\n",
|
|
|
|
|
468 |
"ontheroad</w>|\n",
|
469 |
+
"sharp image|\n",
|
470 |
+
"on a race track|\n",
|
471 |
+
"road construction|\n",
|
472 |
+
"with a soft|\n",
|
473 |
+
"a picture|\n",
|
|
|
|
|
|
|
|
|
|
|
474 |
"faster</w>|\n",
|
475 |
+
"Fantastic|\n",
|
476 |
+
"loving|\n",
|
477 |
+
"road architecture|\n",
|
478 |
+
"day scenery|\n",
|
479 |
+
"wonderful|\n",
|
480 |
+
"head back|\n",
|
481 |
+
"photographic style|\n",
|
482 |
+
"alright</w>|\n",
|
483 |
+
"thats</w>|\n",
|
484 |
+
"awesome inspiring|\n",
|
485 |
+
"Know the past|\n",
|
486 |
+
"seems</w>|\n",
|
487 |
+
"as style|\n",
|
488 |
+
"inspired|\n",
|
489 |
+
"lovely|\n",
|
490 |
+
"well</w>|\n",
|
491 |
+
"reminds</w>|\n",
|
492 |
+
"beautiful amazing|\n",
|
493 |
+
"highway</w>|\n",
|
494 |
+
"appears timeless|\n",
|
495 |
+
"that</w>|\n",
|
496 |
+
"beautiful gorgeous|\n",
|
497 |
+
"highway setting|\n",
|
498 |
+
"Science fiction|\n",
|
499 |
+
"science fiction|\n",
|
500 |
+
"speeding</w>|\n",
|
501 |
+
"in a mountain land|\n",
|
502 |
+
"inspiration|\n",
|
503 |
+
"day time|\n",
|
504 |
+
"busy highway|\n",
|
505 |
+
"really</w>|\n",
|
506 |
+
"Phenomenal|\n",
|
507 |
+
"girl trembling|\n",
|
508 |
+
"beauty|\n",
|
509 |
+
"baby|\n",
|
510 |
+
"top quality|\n",
|
511 |
+
"motorcycle freeway|\n",
|
512 |
+
"very beautiful|\n",
|
513 |
+
"cute beautiful|\n",
|
514 |
+
"beautiful|\n",
|
515 |
+
"beautiful|\n",
|
516 |
+
"Beautiful|\n",
|
517 |
+
"tweeted</w>|\n",
|
518 |
+
"street in city|\n",
|
519 |
+
"exciting|\n",
|
520 |
+
"fire flames|\n",
|
521 |
+
"Memory|\n",
|
522 |
+
"Riding|\n",
|
523 |
+
"in first place|\n",
|
524 |
+
"a spaceship|\n",
|
525 |
+
"automobile</w>|\n",
|
526 |
+
"emotional|\n",
|
527 |
+
"retweeted</w>|\n",
|
528 |
+
"handsome|\n",
|
529 |
+
"car</w>|\n",
|
530 |
+
"artistic cool|\n",
|
531 |
+
"it is Furious|\n",
|
532 |
+
"stanning|\n",
|
533 |
+
"trembling|\n",
|
534 |
+
"cool amazing|\n",
|
535 |
+
"smooth|\n",
|
536 |
+
"this</w>|\n",
|
537 |
+
"countryside|\n",
|
538 |
+
"dynamic movement|\n",
|
539 |
+
"beautiful elegant|\n",
|
540 |
+
"stunning|\n",
|
541 |
+
"ethereal fantastic|\n",
|
542 |
+
"gorgeous inspired|\n",
|
543 |
+
"beautiful hot|\n",
|
544 |
+
"street elegant|\n",
|
545 |
+
"heres</w>|\n",
|
546 |
+
"A stylish|\n",
|
547 |
+
"at_day|\n",
|
548 |
+
"evocative image|\n",
|
549 |
+
"hysterical|\n",
|
550 |
+
"dreamlike|\n",
|
551 |
+
". cute adorable|\n",
|
552 |
+
"Exquisite|\n",
|
553 |
+
"gorgeous}\n"
|
554 |
]
|
555 |
}
|
556 |
]
|
|
|
611 |
],
|
612 |
"metadata": {
|
613 |
"id": "ke6mZ1RZDOeB",
|
614 |
+
"outputId": "d8ef4589-8393-4001-ff35-c0c30646a576",
|
615 |
"colab": {
|
616 |
"base_uri": "https://localhost:8080/",
|
617 |
"height": 1000
|
618 |
}
|
619 |
},
|
620 |
+
"execution_count": 14,
|
621 |
"outputs": [
|
622 |
{
|
623 |
"output_type": "display_data",
|
|
|
661 |
"metadata": {
|
662 |
"id": "rebogpoyOG8k"
|
663 |
},
|
664 |
+
"execution_count": 15,
|
665 |
"outputs": []
|
666 |
},
|
667 |
{
|
|
|
669 |
"source": [
|
670 |
"# @title 🖼️ Print the results\n",
|
671 |
"list_size = 100 # @param {type:'number'}\n",
|
672 |
+
"start_at_index = 100 # @param {type:'number'}\n",
|
673 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
674 |
"print_Prompts = True # @param {type:\"boolean\"}\n",
|
675 |
"print_Prefix = True # @param {type:\"boolean\"}\n",
|
|
|
713 |
"colab": {
|
714 |
"base_uri": "https://localhost:8080/"
|
715 |
},
|
716 |
+
"outputId": "2271de2f-6885-4f72-bcd0-3c39a9cfaada"
|
717 |
},
|
718 |
+
"execution_count": 16,
|
719 |
"outputs": [
|
720 |
{
|
721 |
"output_type": "stream",
|
722 |
"name": "stdout",
|
723 |
"text": [
|
724 |
+
"{reimagined</w>|\n",
|
725 |
+
"movie</w>|\n",
|
726 |
+
"4k vivid colors|\n",
|
727 |
+
"movie still|\n",
|
728 |
+
"Movie still|\n",
|
729 |
+
"heroine</w>|\n",
|
730 |
+
"amazon</w>|\n",
|
731 |
+
"taun-|\n",
|
732 |
+
"alliance</w>|\n",
|
733 |
+
"reminis-|\n",
|
734 |
+
"premiere</w>|\n",
|
735 |
+
"honor-|\n",
|
736 |
+
"artemis</w>|\n",
|
737 |
+
"blue archive|\n",
|
738 |
+
"guarding</w>|\n",
|
739 |
+
"purple-|\n",
|
740 |
+
"protectors</w>|\n",
|
741 |
+
"Concept art|\n",
|
742 |
+
"concept art|\n",
|
743 |
+
"mags</w>|\n",
|
744 |
+
"cinematic still|\n",
|
745 |
+
"Cinematic still|\n",
|
746 |
+
"epic fantasy|\n",
|
747 |
+
"athena</w>|\n",
|
748 |
+
"ragnarok</w>|\n",
|
749 |
+
"bloo-|\n",
|
750 |
+
"special effects|\n",
|
751 |
+
"rained</w>|\n",
|
752 |
+
"vibrant arthouse|\n",
|
753 |
+
"clones</w>|\n",
|
754 |
+
"cinema art|\n",
|
755 |
+
"elves</w>|\n",
|
756 |
+
"movie texture|\n",
|
757 |
+
"anarch-|\n",
|
758 |
+
"oxi-|\n",
|
759 |
+
"sura-|\n",
|
760 |
+
"widow</w>|\n",
|
761 |
+
"vibrant Concept art|\n",
|
762 |
+
"goddess</w>|\n",
|
763 |
+
"Masterpiece Sci-Fi|\n",
|
764 |
+
"recruited</w>|\n",
|
765 |
+
"terra</w>|\n",
|
766 |
+
"sirens</w>|\n",
|
767 |
+
"defiance</w>|\n",
|
768 |
+
"sprite</w>|\n",
|
769 |
+
"soaked</w>|\n",
|
770 |
+
"kavan-|\n",
|
771 |
+
"holocau-|\n",
|
772 |
+
"soldiers</w>|\n",
|
773 |
+
"artstation|\n",
|
774 |
+
"valor</w>|\n",
|
775 |
+
"etty</w>|\n",
|
776 |
+
"marshals</w>|\n",
|
777 |
+
"clint</w>|\n",
|
778 |
+
"hd 8k masterpiece|\n",
|
779 |
+
"bluec-|\n",
|
780 |
+
"poppins</w>|\n",
|
781 |
+
"deeps darks|\n",
|
782 |
+
"hera</w>|\n",
|
783 |
+
"marvel 1girl|\n",
|
784 |
+
"guardian</w>|\n",
|
785 |
+
"references</w>|\n",
|
786 |
+
"woman solo|\n",
|
787 |
+
"4K 2girl|\n",
|
788 |
+
"characters</w>|\n",
|
789 |
+
"resolve</w>|\n",
|
790 |
+
"hail</w>|\n",
|
791 |
+
"sarmy</w>|\n",
|
792 |
+
"watched</w>|\n",
|
793 |
+
"drow-|\n",
|
794 |
+
"absurdres highres|\n",
|
795 |
+
"ogue</w>|\n",
|
796 |
+
"eq-|\n",
|
797 |
+
"snapped</w>|\n",
|
798 |
+
"atrix</w>|\n",
|
799 |
+
"navis</w>|\n",
|
800 |
+
"bodypaint|\n",
|
801 |
+
"striking</w>|\n",
|
802 |
+
"in that scene|\n",
|
803 |
+
"legion-|\n",
|
804 |
+
"hue-|\n",
|
805 |
+
"empowered</w>|\n",
|
806 |
+
"faction</w>|\n",
|
807 |
+
"widows</w>|\n",
|
808 |
+
"1girl vast|\n",
|
809 |
+
"destiny</w>|\n",
|
810 |
+
"visually</w>|\n",
|
811 |
+
"aspirations</w>|\n",
|
812 |
+
"tson</w>|\n",
|
813 |
+
"highres ultrares|\n",
|
814 |
+
"tali-|\n",
|
815 |
+
"swoon</w>|\n",
|
816 |
+
"aroo</w>|\n",
|
817 |
+
"oxi</w>|\n",
|
818 |
+
"blue filter|\n",
|
819 |
+
"blue theme|\n",
|
820 |
+
"women</w>|\n",
|
821 |
+
"orah</w>|\n",
|
822 |
+
"backlash</w>|\n",
|
823 |
+
"legendof-}\n"
|
824 |
]
|
825 |
}
|
826 |
]
|
827 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
828 |
{
|
829 |
"cell_type": "code",
|
830 |
"source": [
|
|
|
1141 |
"execution_count": null,
|
1142 |
"outputs": []
|
1143 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1144 |
{
|
1145 |
"cell_type": "code",
|
1146 |
"source": [
|
|
|
1180 |
"execution_count": null,
|
1181 |
"outputs": []
|
1182 |
},
|
1183 |
+
{
|
1184 |
+
"cell_type": "code",
|
1185 |
+
"source": [
|
1186 |
+
"# @title ⚡ Get similiar tokens (not updated yet)\n",
|
1187 |
+
"import torch\n",
|
1188 |
+
"from transformers import AutoTokenizer\n",
|
1189 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
1190 |
+
"\n",
|
1191 |
+
"# @markdown Write name of token to match against\n",
|
1192 |
+
"token_name = \"banana \" # @param {type:'string',\"placeholder\":\"leave empty for random value token\"}\n",
|
1193 |
+
"\n",
|
1194 |
+
"prompt = token_name\n",
|
1195 |
+
"# @markdown (optional) Mix the token with something else\n",
|
1196 |
+
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for random value token\"}\n",
|
1197 |
+
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
1198 |
+
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
1199 |
+
"# @markdown Limit char size of included token\n",
|
1200 |
+
"\n",
|
1201 |
+
"min_char_size = 0 # param {type:\"slider\", min:0, max: 50, step:1}\n",
|
1202 |
+
"char_range = 50 # param {type:\"slider\", min:0, max: 50, step:1}\n",
|
1203 |
+
"\n",
|
1204 |
+
"tokenizer_output = tokenizer(text = prompt)\n",
|
1205 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
1206 |
+
"id_A = input_ids[1]\n",
|
1207 |
+
"A = torch.tensor(token[id_A])\n",
|
1208 |
+
"A = A/A.norm(p=2, dim=-1, keepdim=True)\n",
|
1209 |
+
"#-----#\n",
|
1210 |
+
"tokenizer_output = tokenizer(text = mix_with)\n",
|
1211 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
1212 |
+
"id_C = input_ids[1]\n",
|
1213 |
+
"C = torch.tensor(token[id_C])\n",
|
1214 |
+
"C = C/C.norm(p=2, dim=-1, keepdim=True)\n",
|
1215 |
+
"#-----#\n",
|
1216 |
+
"sim_AC = torch.dot(A,C)\n",
|
1217 |
+
"#-----#\n",
|
1218 |
+
"print(input_ids)\n",
|
1219 |
+
"#-----#\n",
|
1220 |
+
"\n",
|
1221 |
+
"#if no imput exists we just randomize the entire thing\n",
|
1222 |
+
"if (prompt == \"\"):\n",
|
1223 |
+
" id_A = -1\n",
|
1224 |
+
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
|
1225 |
+
" R = torch.rand(A.shape)\n",
|
1226 |
+
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
1227 |
+
" A = R\n",
|
1228 |
+
" name_A = 'random_A'\n",
|
1229 |
+
"\n",
|
1230 |
+
"#if no imput exists we just randomize the entire thing\n",
|
1231 |
+
"if (mix_with == \"\"):\n",
|
1232 |
+
" id_C = -1\n",
|
1233 |
+
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
|
1234 |
+
" R = torch.rand(A.shape)\n",
|
1235 |
+
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
1236 |
+
" C = R\n",
|
1237 |
+
" name_C = 'random_C'\n",
|
1238 |
+
"\n",
|
1239 |
+
"name_A = \"A of random type\"\n",
|
1240 |
+
"if (id_A>-1):\n",
|
1241 |
+
" name_A = vocab(id_A)\n",
|
1242 |
+
"\n",
|
1243 |
+
"name_C = \"token C of random type\"\n",
|
1244 |
+
"if (id_C>-1):\n",
|
1245 |
+
" name_C = vocab(id_C)\n",
|
1246 |
+
"\n",
|
1247 |
+
"print(f\"The similarity between A '{name_A}' and C '{name_C}' is {round(sim_AC.item()*100,2)} %\")\n",
|
1248 |
+
"\n",
|
1249 |
+
"if (mix_method == \"None\"):\n",
|
1250 |
+
" print(\"No operation\")\n",
|
1251 |
+
"\n",
|
1252 |
+
"if (mix_method == \"Average\"):\n",
|
1253 |
+
" A = w*A + (1-w)*C\n",
|
1254 |
+
" _A = LA.vector_norm(A, ord=2)\n",
|
1255 |
+
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = w*A + (1-w)*C , where C is '{name_C}' token , for w = {w} \")\n",
|
1256 |
+
"\n",
|
1257 |
+
"if (mix_method == \"Subtract\"):\n",
|
1258 |
+
" tmp = w*A - (1-w)*C\n",
|
1259 |
+
" tmp = tmp/tmp.norm(p=2, dim=-1, keepdim=True)\n",
|
1260 |
+
" A = tmp\n",
|
1261 |
+
" #//---//\n",
|
1262 |
+
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A*norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n",
|
1263 |
+
"\n",
|
1264 |
+
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
|
1265 |
+
"\n",
|
1266 |
+
"dots = torch.zeros(NUM_TOKENS)\n",
|
1267 |
+
"for index in range(NUM_TOKENS):\n",
|
1268 |
+
" id_B = index\n",
|
1269 |
+
" B = torch.tensor(token[id_B])\n",
|
1270 |
+
" B = B/B.norm(p=2, dim=-1, keepdim=True)\n",
|
1271 |
+
" sim_AB = torch.dot(A,B)\n",
|
1272 |
+
" dots[index] = sim_AB\n",
|
1273 |
+
"\n",
|
1274 |
+
"\n",
|
1275 |
+
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
1276 |
+
"#----#\n",
|
1277 |
+
"if (mix_method == \"Average\"):\n",
|
1278 |
+
" print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
1279 |
+
"if (mix_method == \"Subtract\"):\n",
|
1280 |
+
" print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
1281 |
+
"if (mix_method == \"None\"):\n",
|
1282 |
+
" print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n",
|
1283 |
+
"\n",
|
1284 |
+
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result\n",
|
1285 |
+
"\n",
|
1286 |
+
"# @markdown Set print options\n",
|
1287 |
+
"list_size = 100 # @param {type:'number'}\n",
|
1288 |
+
"print_ID = False # @param {type:\"boolean\"}\n",
|
1289 |
+
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
1290 |
+
"print_Name = True # @param {type:\"boolean\"}\n",
|
1291 |
+
"print_Divider = True # @param {type:\"boolean\"}\n",
|
1292 |
+
"\n",
|
1293 |
+
"\n",
|
1294 |
+
"if (print_Divider):\n",
|
1295 |
+
" print('//---//')\n",
|
1296 |
+
"\n",
|
1297 |
+
"print('')\n",
|
1298 |
+
"print('Here is the result : ')\n",
|
1299 |
+
"print('')\n",
|
1300 |
+
"\n",
|
1301 |
+
"for index in range(list_size):\n",
|
1302 |
+
" id = indices[index].item()\n",
|
1303 |
+
" if (print_Name):\n",
|
1304 |
+
" print(f'{vocab(id)}') # vocab item\n",
|
1305 |
+
" if (print_ID):\n",
|
1306 |
+
" print(f'ID = {id}') # IDs\n",
|
1307 |
+
" if (print_Similarity):\n",
|
1308 |
+
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
|
1309 |
+
" if (print_Divider):\n",
|
1310 |
+
" print('--------')\n",
|
1311 |
+
"\n",
|
1312 |
+
"#Print the sorted list from above result\n",
|
1313 |
+
"\n",
|
1314 |
+
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
|
1315 |
+
"\n",
|
1316 |
+
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID.\n",
|
1317 |
+
"\n",
|
1318 |
+
"# Save results as .db file\n",
|
1319 |
+
"import shelve\n",
|
1320 |
+
"VOCAB_FILENAME = 'tokens_most_similiar_to_' + name_A.replace('</w>','').strip()\n",
|
1321 |
+
"d = shelve.open(VOCAB_FILENAME)\n",
|
1322 |
+
"#NUM TOKENS == 49407\n",
|
1323 |
+
"for index in range(NUM_TOKENS):\n",
|
1324 |
+
" #print(d[f'{index}']) #<-----Use this to read values from the .db file\n",
|
1325 |
+
" d[f'{index}']= vocab(indices[index].item()) #<---- write values to .db file\n",
|
1326 |
+
"#----#\n",
|
1327 |
+
"d.close() #close the file\n",
|
1328 |
+
"# See this link for additional stuff to do with shelve: https://docs.python.org/3/library/shelve.html"
|
1329 |
+
],
|
1330 |
+
"metadata": {
|
1331 |
+
"id": "iWeFnT1gAx6A"
|
1332 |
+
},
|
1333 |
+
"execution_count": null,
|
1334 |
+
"outputs": []
|
1335 |
+
},
|
1336 |
{
|
1337 |
"cell_type": "markdown",
|
1338 |
"source": [
|
|
|
1382 |
"my_mkdirs('/content/text_encodings/')\n",
|
1383 |
"filename = ''\n",
|
1384 |
"\n",
|
1385 |
+
"NUM_FILES = 10\n",
|
1386 |
"\n",
|
1387 |
"for file_index in range(NUM_FILES + 1):\n",
|
1388 |
" if file_index <1: continue\n",
|
1389 |
" #if file_index >4: break\n",
|
1390 |
+
" filename = f'🧿📘 fusion-t2i-civitai-0-20-chars-mix-{file_index}'\n",
|
1391 |
" #🦜 fusion-t2i-prompt-features-1.json\n",
|
1392 |
"\n",
|
1393 |
" # Read suffix.json\n",
|
1394 |
+
" %cd /content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
1395 |
" with open(filename + '.json', 'r') as f:\n",
|
1396 |
" data = json.load(f)\n",
|
1397 |
" _df = pd.DataFrame({'count': data})['count']\n",
|
|
|
1427 |
{
|
1428 |
"cell_type": "code",
|
1429 |
"source": [
|
1430 |
+
"# @title Download the created JSON as .zip file\n",
|
1431 |
"%cd /content/\n",
|
1432 |
+
"!zip -r /content/blue.zip /content/text-to-image-prompts/civitai-prompts/blue/text"
|
1433 |
],
|
1434 |
"metadata": {
|
1435 |
"id": "gX-sHZPWj4Lt"
|