File size: 6,372 Bytes
44eca84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028385
 
 
 
 
 
 
 
 
44eca84
 
 
 
 
 
 
 
f22aece
1028385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44eca84
 
 
 
 
 
 
 
 
 
811a69b
 
44eca84
 
 
 
 
 
 
1028385
 
 
 
 
 
 
 
 
 
 
44eca84
 
 
 
1028385
 
811a69b
1028385
 
 
 
 
 
 
 
 
 
 
 
 
 
44eca84
1028385
 
 
 
44eca84
1028385
 
 
 
44eca84
1028385
 
44eca84
1028385
 
811a69b
1028385
44eca84
 
1028385
44eca84
1028385
44eca84
 
1028385
 
 
9fb003c
 
 
 
 
 
 
1028385
811a69b
9fb003c
 
 
 
 
 
 
 
1028385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44eca84
 
 
 
 
 
 
 
 
 
 
 
8ad9fee
44eca84
 
8ad9fee
44eca84
8ad9fee
44eca84
 
8ad9fee
44eca84
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "This Notebook is a Stable-diffusion tool which allows you to find similiar tokens from the SD 1.5 vocab.json that you can use for text-to-image generation"
      ],
      "metadata": {
        "id": "L7JTcbOdBPfh"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Load the tokens into the colab\n",
        "!git clone https://huggingface.co/datasets/codeShare/sd_tokens\n",
        "import torch\n",
        "from torch import linalg as LA\n",
        "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
        "%cd /content/sd_tokens\n",
        "token = torch.load('sd15_tensors.pt', map_location=device, weights_only=True)\n",
        "#-----#\n",
        "\n",
        "#Import the vocab.json\n",
        "import json\n",
        "import pandas as pd\n",
        "with open('vocab.json', 'r') as f:\n",
        "    data = json.load(f)\n",
        "\n",
        "_df = pd.DataFrame({'count': data})['count']\n",
        "\n",
        "vocab = {\n",
        "    value: key for key, value in _df.items()\n",
        "}\n",
        "#-----#\n",
        "\n",
        "# Define functions/constants\n",
        "NUM_TOKENS = 49407\n",
        "\n",
        "def absolute_value(x):\n",
        "    return max(x, -x)\n",
        "\n",
        "def similarity(id_A , id_B):\n",
        "  #Tensors\n",
        "  A = token[id_A]\n",
        "  B = token[id_B]\n",
        "  #Tensor vector length (2nd order, i.e (a^2 + b^2 + ....)^(1/2)\n",
        "  _A = LA.vector_norm(A, ord=2)\n",
        "  _B = LA.vector_norm(B, ord=2)\n",
        "  #----#\n",
        "  result = torch.dot(A,B)/(_A*_B)\n",
        "  similarity_pcnt = absolute_value(result.item()*100)\n",
        "  similarity_pcnt_aprox = round(similarity_pcnt, 3)\n",
        "  result = f'{similarity_pcnt_aprox} %'\n",
        "  return result\n",
        "#----#"
      ],
      "metadata": {
        "id": "Ch9puvwKH1s3"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "print(vocab[8922]) #the vocab item for ID 8922\n",
        "print(token[8922].shape)  #dimension of the token"
      ],
      "metadata": {
        "id": "S_Yh9gH_OUA1"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "Get the IDs from a prompt text.\n",
        "\n",
        "The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens"
      ],
      "metadata": {
        "id": "f1-jS7YJApiO"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "from transformers import AutoTokenizer\n",
        "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
        "prompt= \"banana\" # @param {type:'string'}\n",
        "tokenizer_output = tokenizer(text = prompt)\n",
        "input_ids = tokenizer_output['input_ids']\n",
        "print(input_ids)"
      ],
      "metadata": {
        "id": "RPdkYzT2_X85"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "#Produce a list id IDs that are most similiar to the prompt ID at positiion 1\n",
        "\n",
        "id_A = input_ids[1]\n",
        "A = token[id_A]\n",
        "_A = LA.vector_norm(A, ord=2)\n",
        "dots = torch.zeros(NUM_TOKENS)\n",
        "\n",
        "for index in range(NUM_TOKENS):\n",
        "  id_B = index\n",
        "  B = token[id_B]\n",
        "  _B = LA.vector_norm(B, ord=2)\n",
        "  result = torch.dot(A,B)/(_A*_B)\n",
        "  result = absolute_value(result.item())\n",
        "  dots[index] = result\n",
        "\n",
        "sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
        "#----#\n",
        "print(f'Calculated all cosine-similarities between the token {vocab[id_A]} with ID = {id_A} the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n",
        "print(f'Calculated indices as a 1x{indices.shape[0]} tensor')"
      ],
      "metadata": {
        "id": "juxsvco9B0iV"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "list_size = 100 # @param {type:'number'}\n",
        "\n",
        "print_ID = False # @param {type:\"boolean\"}\n",
        "print_Similarity = True # @param {type:\"boolean\"}\n",
        "print_Name = True # @param {type:\"boolean\"}\n",
        "print_Divider = False # @param {type:\"boolean\"}\n",
        "\n",
        "for index in range(list_size):\n",
        "  id = indices[index].item()\n",
        "  if (print_Name):\n",
        "    print(f'{vocab[id]}') # vocab item\n",
        "  if (print_ID):\n",
        "    print(f'ID = {id}') # IDs\n",
        "  if (print_Similarity):\n",
        "    print(f'similiarity = {round(sorted[index].item()*100,2)} %') # % value\n",
        "  if (print_Divider):\n",
        "    print('--------')"
      ],
      "metadata": {
        "id": "YIEmLAzbHeuo"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "Find the most similiar Tokens for given input"
      ],
      "metadata": {
        "id": "qqZ5DvfLBJnw"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "Valid ID ranges for id_for_token_A / id_for_token_B are between 0 and 49407"
      ],
      "metadata": {
        "id": "kX72bAuhOtlT"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "id_for_token_A = 4567 # @param {type:'number'}\n",
        "id_for_token_B = 4343 # @param {type:'number'}\n",
        "\n",
        "similarity_str =  'The similarity between tokens A and B is ' + similarity(id_for_token_A , id_for_token_B)\n",
        "\n",
        "print(similarity_str)"
      ],
      "metadata": {
        "id": "MwmOdC9cNZty"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}