Upload 28 files
Browse files- AWL_detector_utils/configs/__init__.py +0 -0
- AWL_detector_utils/configs/bases/Base-RCNN-FPN.yaml +42 -0
- AWL_detector_utils/configs/bases/Base-RetinaNet.yaml +28 -0
- AWL_detector_utils/configs/bases/__init__.py +0 -0
- AWL_detector_utils/configs/faster_rcnn_web.yaml +33 -0
- AWL_detector_utils/configs/faster_rcnn_web_lr0.001.yaml +35 -0
- AWL_detector_utils/configs/faster_rcnn_web_lr0.01.yaml +36 -0
- AWL_detector_utils/output/website_lr0.001/model_final.pth +3 -0
- crp_classifier_utils/output/Increase_resolution_lr0.005/BiT-M-R50x1V2_0.005.pth.tar +3 -0
- crp_locator_utils/login_finder/configs/bases/Base-RCNN-FPN.yaml +42 -0
- crp_locator_utils/login_finder/configs/bases/Base-RetinaNet.yaml +28 -0
- crp_locator_utils/login_finder/configs/bases/__init__.py +0 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_RPN.yaml +41 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.00001.yaml +33 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.00001_aug.yaml +33 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.00001_finetune.yaml +33 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.0001.yaml +34 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.0001_aug.yaml +34 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.0001_finetune.yaml +34 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.001.yaml +34 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.001_aug.yaml +34 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.001_finetune.yaml +34 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.01.yaml +34 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.01_aug.yaml +34 -0
- crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.01_finetune.yaml +34 -0
- crp_locator_utils/login_finder/output/lr0.001_finetune/model_final.pth +3 -0
- phishpedia_siamese/domain_map.pkl +3 -0
- phishpedia_siamese/expand_targetlist.zip +3 -0
AWL_detector_utils/configs/__init__.py
ADDED
File without changes
|
AWL_detector_utils/configs/bases/Base-RCNN-FPN.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_resnet_fpn_backbone"
|
5 |
+
RESNETS:
|
6 |
+
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
7 |
+
FPN:
|
8 |
+
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
9 |
+
ANCHOR_GENERATOR:
|
10 |
+
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
11 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
12 |
+
RPN:
|
13 |
+
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
14 |
+
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
15 |
+
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
16 |
+
# Detectron1 uses 2000 proposals per-batch,
|
17 |
+
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
18 |
+
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
19 |
+
POST_NMS_TOPK_TRAIN: 1000
|
20 |
+
POST_NMS_TOPK_TEST: 1000
|
21 |
+
ROI_HEADS:
|
22 |
+
NAME: "StandardROIHeads"
|
23 |
+
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
24 |
+
ROI_BOX_HEAD:
|
25 |
+
NAME: "FastRCNNConvFCHead"
|
26 |
+
NUM_FC: 2
|
27 |
+
POOLER_RESOLUTION: 7
|
28 |
+
ROI_MASK_HEAD:
|
29 |
+
NAME: "MaskRCNNConvUpsampleHead"
|
30 |
+
NUM_CONV: 4
|
31 |
+
POOLER_RESOLUTION: 14
|
32 |
+
DATASETS:
|
33 |
+
TRAIN: ("coco_2017_train",)
|
34 |
+
TEST: ("coco_2017_val",)
|
35 |
+
SOLVER:
|
36 |
+
IMS_PER_BATCH: 16
|
37 |
+
BASE_LR: 0.02
|
38 |
+
STEPS: (60000, 80000)
|
39 |
+
MAX_ITER: 90000
|
40 |
+
INPUT:
|
41 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
42 |
+
VERSION: 2
|
AWL_detector_utils/configs/bases/Base-RetinaNet.yaml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "RetinaNet"
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_retinanet_resnet_fpn_backbone"
|
5 |
+
RESNETS:
|
6 |
+
OUT_FEATURES: ["res3", "res4", "res5"]
|
7 |
+
ANCHOR_GENERATOR:
|
8 |
+
SIZES:
|
9 |
+
!!python/object/apply:eval [
|
10 |
+
"[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]",
|
11 |
+
]
|
12 |
+
FPN:
|
13 |
+
IN_FEATURES: ["res3", "res4", "res5"]
|
14 |
+
RETINANET:
|
15 |
+
IOU_THRESHOLDS: [0.4, 0.5]
|
16 |
+
IOU_LABELS: [0, -1, 1]
|
17 |
+
SMOOTH_L1_LOSS_BETA: 0.0
|
18 |
+
DATASETS:
|
19 |
+
TRAIN: ("coco_2017_train",)
|
20 |
+
TEST: ("coco_2017_val",)
|
21 |
+
SOLVER:
|
22 |
+
IMS_PER_BATCH: 16
|
23 |
+
BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
|
24 |
+
STEPS: (60000, 80000)
|
25 |
+
MAX_ITER: 90000
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
28 |
+
VERSION: 2
|
AWL_detector_utils/configs/bases/__init__.py
ADDED
File without changes
|
AWL_detector_utils/configs/faster_rcnn_web.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 5 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("web_train",)
|
16 |
+
TEST: ("web_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.00001
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (16341, 21788) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 24512 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 1000
|
32 |
+
OUTPUT_DIR: "./output/website" # Specify output directory
|
33 |
+
|
AWL_detector_utils/configs/faster_rcnn_web_lr0.001.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 5 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("web_train",)
|
16 |
+
TEST: ("web_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.001
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (16341, 21788) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 24512 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 0
|
32 |
+
OUTPUT_DIR: "./output/website_lr0.001" # Specify output directory
|
33 |
+
|
34 |
+
|
35 |
+
|
AWL_detector_utils/configs/faster_rcnn_web_lr0.01.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 5 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("web_train",)
|
16 |
+
TEST: ("web_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.01
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (16341, 21788) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 24512 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 0
|
32 |
+
OUTPUT_DIR: "./output/website_lr0.01" # Specify output directory
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
AWL_detector_utils/output/website_lr0.001/model_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11b2b2360ca1865e3a3f07b7837232ceac4ebceca32ad1d63c9c643ea6454d92
|
3 |
+
size 330145096
|
crp_classifier_utils/output/Increase_resolution_lr0.005/BiT-M-R50x1V2_0.005.pth.tar
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c364a56229bb518d34c9b6a07f4a5d253fc42c3cb0e87734d79da8f54f8d778
|
3 |
+
size 188221125
|
crp_locator_utils/login_finder/configs/bases/Base-RCNN-FPN.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_resnet_fpn_backbone"
|
5 |
+
RESNETS:
|
6 |
+
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
7 |
+
FPN:
|
8 |
+
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
9 |
+
ANCHOR_GENERATOR:
|
10 |
+
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
11 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
12 |
+
RPN:
|
13 |
+
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
14 |
+
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
15 |
+
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
16 |
+
# Detectron1 uses 2000 proposals per-batch,
|
17 |
+
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
18 |
+
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
19 |
+
POST_NMS_TOPK_TRAIN: 1000
|
20 |
+
POST_NMS_TOPK_TEST: 1000
|
21 |
+
ROI_HEADS:
|
22 |
+
NAME: "StandardROIHeads"
|
23 |
+
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
24 |
+
ROI_BOX_HEAD:
|
25 |
+
NAME: "FastRCNNConvFCHead"
|
26 |
+
NUM_FC: 2
|
27 |
+
POOLER_RESOLUTION: 7
|
28 |
+
ROI_MASK_HEAD:
|
29 |
+
NAME: "MaskRCNNConvUpsampleHead"
|
30 |
+
NUM_CONV: 4
|
31 |
+
POOLER_RESOLUTION: 14
|
32 |
+
DATASETS:
|
33 |
+
TRAIN: ("coco_2017_train",)
|
34 |
+
TEST: ("coco_2017_val",)
|
35 |
+
SOLVER:
|
36 |
+
IMS_PER_BATCH: 16
|
37 |
+
BASE_LR: 0.02
|
38 |
+
STEPS: (60000, 80000)
|
39 |
+
MAX_ITER: 90000
|
40 |
+
INPUT:
|
41 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
42 |
+
VERSION: 2
|
crp_locator_utils/login_finder/configs/bases/Base-RetinaNet.yaml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "RetinaNet"
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_retinanet_resnet_fpn_backbone"
|
5 |
+
RESNETS:
|
6 |
+
OUT_FEATURES: ["res3", "res4", "res5"]
|
7 |
+
ANCHOR_GENERATOR:
|
8 |
+
SIZES:
|
9 |
+
!!python/object/apply:eval [
|
10 |
+
"[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]",
|
11 |
+
]
|
12 |
+
FPN:
|
13 |
+
IN_FEATURES: ["res3", "res4", "res5"]
|
14 |
+
RETINANET:
|
15 |
+
IOU_THRESHOLDS: [0.4, 0.5]
|
16 |
+
IOU_LABELS: [0, -1, 1]
|
17 |
+
SMOOTH_L1_LOSS_BETA: 0.0
|
18 |
+
DATASETS:
|
19 |
+
TRAIN: ("coco_2017_train",)
|
20 |
+
TEST: ("coco_2017_val",)
|
21 |
+
SOLVER:
|
22 |
+
IMS_PER_BATCH: 16
|
23 |
+
BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
|
24 |
+
STEPS: (60000, 80000)
|
25 |
+
MAX_ITER: 90000
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
28 |
+
VERSION: 2
|
crp_locator_utils/login_finder/configs/bases/__init__.py
ADDED
File without changes
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_RPN.yaml
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
RPN:
|
15 |
+
POST_NMS_TOPK_TEST: 5000 # increase number of regions, default is 1000
|
16 |
+
|
17 |
+
DATASETS:
|
18 |
+
TRAIN: ("login_train",)
|
19 |
+
TEST: ("login_test",)
|
20 |
+
|
21 |
+
DATALOADER:
|
22 |
+
NUM_WORKERS: 0
|
23 |
+
|
24 |
+
SOLVER:
|
25 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
26 |
+
BASE_LR: 0.00001
|
27 |
+
# (2/3, 8/9)
|
28 |
+
STEPS: (20000, 26666) # The iteration number to decrease learning rate by GAMMA.
|
29 |
+
MAX_ITER: 30000 # Number of training iterations
|
30 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
31 |
+
|
32 |
+
INPUT:
|
33 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
34 |
+
|
35 |
+
TEST:
|
36 |
+
# The period (in terms of steps) to evaluate the model during training.
|
37 |
+
# Set to 0 to disable.
|
38 |
+
EVAL_PERIOD: 2000
|
39 |
+
|
40 |
+
OUTPUT_DIR: "./output/lr0.00001_nocheat" # Specify output directory
|
41 |
+
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.00001.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("login_train",)
|
16 |
+
TEST: ("login_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.00001
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (20000, 26666) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 30000 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 2000
|
32 |
+
OUTPUT_DIR: "./output/lr0.00001_nocheat" # Specify output directory
|
33 |
+
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.00001_aug.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("login_train_aug",)
|
16 |
+
TEST: ("login_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.00001
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (26666, 35555) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 40000 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 2000
|
32 |
+
OUTPUT_DIR: "./output/lr0.00001_aug" # Specify output directory
|
33 |
+
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.00001_finetune.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "./output/lr0.001_aug/model_final.pth"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("login_train",)
|
16 |
+
TEST: ("login_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.00001
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (12000, 16000) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 18000 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 2000
|
32 |
+
OUTPUT_DIR: "./output/lr0.00001_finetune" # Specify output directory
|
33 |
+
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.0001.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("login_train",)
|
16 |
+
TEST: ("login_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.0001
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (20000, 26666) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 30000 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 2000
|
32 |
+
OUTPUT_DIR: "./output/lr0.0001_nocheat" # Specify output directory
|
33 |
+
|
34 |
+
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.0001_aug.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("login_train_aug",)
|
16 |
+
TEST: ("login_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.0001
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (26666, 35555) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 40000 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 2000
|
32 |
+
OUTPUT_DIR: "./output/lr0.0001_aug" # Specify output directory
|
33 |
+
|
34 |
+
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.0001_finetune.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "./output/lr0.001_aug/model_final.pth"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("login_train",)
|
16 |
+
TEST: ("login_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.0001
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (12000, 16000) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 18000 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 2000
|
32 |
+
OUTPUT_DIR: "./output/lr0.0001_finetune" # Specify output directory
|
33 |
+
|
34 |
+
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.001.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("login_train",)
|
16 |
+
TEST: ("login_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.001
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (20000, 26666) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 30000 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 2000
|
32 |
+
OUTPUT_DIR: "./output/lr0.001_nocheat" # Specify output directory
|
33 |
+
|
34 |
+
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.001_aug.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("login_train_aug",)
|
16 |
+
TEST: ("login_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.001
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (26666, 35555) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 40000 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 2000
|
32 |
+
OUTPUT_DIR: "./output/lr0.001_aug" # Specify output directory
|
33 |
+
|
34 |
+
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.001_finetune.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "./output/lr0.001_aug/model_final.pth"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("login_train",)
|
16 |
+
TEST: ("login_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.001
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (12000, 16000) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 18000 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 2000
|
32 |
+
OUTPUT_DIR: "./output/lr0.001_finetune" # Specify output directory
|
33 |
+
|
34 |
+
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.01.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("login_train",)
|
16 |
+
TEST: ("login_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.01
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (20000, 26666) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 30000 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 2000
|
32 |
+
OUTPUT_DIR: "./output/lr0.01_nocheat" # Specify output directory
|
33 |
+
|
34 |
+
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.01_aug.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("login_train_aug",)
|
16 |
+
TEST: ("login_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.01
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (26666, 35555) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 40000 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 2000
|
32 |
+
OUTPUT_DIR: "./output/lr0.01_aug" # Specify output directory
|
33 |
+
|
34 |
+
|
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.01_finetune.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "./bases/Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# COCO ResNet50 weights
|
4 |
+
WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
|
5 |
+
MASK_ON: False # Not doing segmentation
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50 # ResNet50
|
8 |
+
ROI_HEADS:
|
9 |
+
NUM_CLASSES: 1 # Change to suit own task
|
10 |
+
# Can reduce this for lower memory/faster training; Default 512
|
11 |
+
BATCH_SIZE_PER_IMAGE: 512
|
12 |
+
BACKBONE:
|
13 |
+
FREEZE_AT: 2 # Default 2
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("login_train",)
|
16 |
+
TEST: ("login_test",)
|
17 |
+
DATALOADER:
|
18 |
+
NUM_WORKERS: 0
|
19 |
+
SOLVER:
|
20 |
+
IMS_PER_BATCH: 8 # Batch size; Default 16
|
21 |
+
BASE_LR: 0.01
|
22 |
+
# (2/3, 8/9)
|
23 |
+
STEPS: (4000, 5333) # The iteration number to decrease learning rate by GAMMA.
|
24 |
+
MAX_ITER: 6000 # Number of training iterations
|
25 |
+
CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
|
26 |
+
INPUT:
|
27 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
|
28 |
+
TEST:
|
29 |
+
# The period (in terms of steps) to evaluate the model during training.
|
30 |
+
# Set to 0 to disable.
|
31 |
+
EVAL_PERIOD: 2000
|
32 |
+
OUTPUT_DIR: "./output/lr0.01_finetune" # Specify output directory
|
33 |
+
|
34 |
+
|
crp_locator_utils/login_finder/output/lr0.001_finetune/model_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc8c0aea58fa48a9eba195bcdb80f03163e9737d42ada675e1d3c4d815235565
|
3 |
+
size 329981096
|
phishpedia_siamese/domain_map.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f30fb3282e9defb7f464bb0abb5d1ffa9bc6839b244097badaf401d13217d80a
|
3 |
+
size 220978
|
phishpedia_siamese/expand_targetlist.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1f8062f18a11b0c255910da034534e5d412b5725d800e983fc6dbc71b2d83b9
|
3 |
+
size 212573017
|