Kelsey98 commited on
Commit
bc41591
·
1 Parent(s): 5fcae1b

Upload 28 files

Browse files
Files changed (28) hide show
  1. AWL_detector_utils/configs/__init__.py +0 -0
  2. AWL_detector_utils/configs/bases/Base-RCNN-FPN.yaml +42 -0
  3. AWL_detector_utils/configs/bases/Base-RetinaNet.yaml +28 -0
  4. AWL_detector_utils/configs/bases/__init__.py +0 -0
  5. AWL_detector_utils/configs/faster_rcnn_web.yaml +33 -0
  6. AWL_detector_utils/configs/faster_rcnn_web_lr0.001.yaml +35 -0
  7. AWL_detector_utils/configs/faster_rcnn_web_lr0.01.yaml +36 -0
  8. AWL_detector_utils/output/website_lr0.001/model_final.pth +3 -0
  9. crp_classifier_utils/output/Increase_resolution_lr0.005/BiT-M-R50x1V2_0.005.pth.tar +3 -0
  10. crp_locator_utils/login_finder/configs/bases/Base-RCNN-FPN.yaml +42 -0
  11. crp_locator_utils/login_finder/configs/bases/Base-RetinaNet.yaml +28 -0
  12. crp_locator_utils/login_finder/configs/bases/__init__.py +0 -0
  13. crp_locator_utils/login_finder/configs/faster_rcnn_login_RPN.yaml +41 -0
  14. crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.00001.yaml +33 -0
  15. crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.00001_aug.yaml +33 -0
  16. crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.00001_finetune.yaml +33 -0
  17. crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.0001.yaml +34 -0
  18. crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.0001_aug.yaml +34 -0
  19. crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.0001_finetune.yaml +34 -0
  20. crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.001.yaml +34 -0
  21. crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.001_aug.yaml +34 -0
  22. crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.001_finetune.yaml +34 -0
  23. crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.01.yaml +34 -0
  24. crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.01_aug.yaml +34 -0
  25. crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.01_finetune.yaml +34 -0
  26. crp_locator_utils/login_finder/output/lr0.001_finetune/model_final.pth +3 -0
  27. phishpedia_siamese/domain_map.pkl +3 -0
  28. phishpedia_siamese/expand_targetlist.zip +3 -0
AWL_detector_utils/configs/__init__.py ADDED
File without changes
AWL_detector_utils/configs/bases/Base-RCNN-FPN.yaml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MODEL:
2
+ META_ARCHITECTURE: "GeneralizedRCNN"
3
+ BACKBONE:
4
+ NAME: "build_resnet_fpn_backbone"
5
+ RESNETS:
6
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
7
+ FPN:
8
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
9
+ ANCHOR_GENERATOR:
10
+ SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
11
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
12
+ RPN:
13
+ IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
14
+ PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
15
+ PRE_NMS_TOPK_TEST: 1000 # Per FPN level
16
+ # Detectron1 uses 2000 proposals per-batch,
17
+ # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
18
+ # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
19
+ POST_NMS_TOPK_TRAIN: 1000
20
+ POST_NMS_TOPK_TEST: 1000
21
+ ROI_HEADS:
22
+ NAME: "StandardROIHeads"
23
+ IN_FEATURES: ["p2", "p3", "p4", "p5"]
24
+ ROI_BOX_HEAD:
25
+ NAME: "FastRCNNConvFCHead"
26
+ NUM_FC: 2
27
+ POOLER_RESOLUTION: 7
28
+ ROI_MASK_HEAD:
29
+ NAME: "MaskRCNNConvUpsampleHead"
30
+ NUM_CONV: 4
31
+ POOLER_RESOLUTION: 14
32
+ DATASETS:
33
+ TRAIN: ("coco_2017_train",)
34
+ TEST: ("coco_2017_val",)
35
+ SOLVER:
36
+ IMS_PER_BATCH: 16
37
+ BASE_LR: 0.02
38
+ STEPS: (60000, 80000)
39
+ MAX_ITER: 90000
40
+ INPUT:
41
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
42
+ VERSION: 2
AWL_detector_utils/configs/bases/Base-RetinaNet.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MODEL:
2
+ META_ARCHITECTURE: "RetinaNet"
3
+ BACKBONE:
4
+ NAME: "build_retinanet_resnet_fpn_backbone"
5
+ RESNETS:
6
+ OUT_FEATURES: ["res3", "res4", "res5"]
7
+ ANCHOR_GENERATOR:
8
+ SIZES:
9
+ !!python/object/apply:eval [
10
+ "[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]",
11
+ ]
12
+ FPN:
13
+ IN_FEATURES: ["res3", "res4", "res5"]
14
+ RETINANET:
15
+ IOU_THRESHOLDS: [0.4, 0.5]
16
+ IOU_LABELS: [0, -1, 1]
17
+ SMOOTH_L1_LOSS_BETA: 0.0
18
+ DATASETS:
19
+ TRAIN: ("coco_2017_train",)
20
+ TEST: ("coco_2017_val",)
21
+ SOLVER:
22
+ IMS_PER_BATCH: 16
23
+ BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
24
+ STEPS: (60000, 80000)
25
+ MAX_ITER: 90000
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
28
+ VERSION: 2
AWL_detector_utils/configs/bases/__init__.py ADDED
File without changes
AWL_detector_utils/configs/faster_rcnn_web.yaml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 5 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("web_train",)
16
+ TEST: ("web_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.00001
22
+ # (2/3, 8/9)
23
+ STEPS: (16341, 21788) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 24512 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 1000
32
+ OUTPUT_DIR: "./output/website" # Specify output directory
33
+
AWL_detector_utils/configs/faster_rcnn_web_lr0.001.yaml ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 5 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("web_train",)
16
+ TEST: ("web_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.001
22
+ # (2/3, 8/9)
23
+ STEPS: (16341, 21788) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 24512 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 0
32
+ OUTPUT_DIR: "./output/website_lr0.001" # Specify output directory
33
+
34
+
35
+
AWL_detector_utils/configs/faster_rcnn_web_lr0.01.yaml ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 5 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("web_train",)
16
+ TEST: ("web_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.01
22
+ # (2/3, 8/9)
23
+ STEPS: (16341, 21788) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 24512 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 0
32
+ OUTPUT_DIR: "./output/website_lr0.01" # Specify output directory
33
+
34
+
35
+
36
+
AWL_detector_utils/output/website_lr0.001/model_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11b2b2360ca1865e3a3f07b7837232ceac4ebceca32ad1d63c9c643ea6454d92
3
+ size 330145096
crp_classifier_utils/output/Increase_resolution_lr0.005/BiT-M-R50x1V2_0.005.pth.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c364a56229bb518d34c9b6a07f4a5d253fc42c3cb0e87734d79da8f54f8d778
3
+ size 188221125
crp_locator_utils/login_finder/configs/bases/Base-RCNN-FPN.yaml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MODEL:
2
+ META_ARCHITECTURE: "GeneralizedRCNN"
3
+ BACKBONE:
4
+ NAME: "build_resnet_fpn_backbone"
5
+ RESNETS:
6
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
7
+ FPN:
8
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
9
+ ANCHOR_GENERATOR:
10
+ SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
11
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
12
+ RPN:
13
+ IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
14
+ PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
15
+ PRE_NMS_TOPK_TEST: 1000 # Per FPN level
16
+ # Detectron1 uses 2000 proposals per-batch,
17
+ # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
18
+ # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
19
+ POST_NMS_TOPK_TRAIN: 1000
20
+ POST_NMS_TOPK_TEST: 1000
21
+ ROI_HEADS:
22
+ NAME: "StandardROIHeads"
23
+ IN_FEATURES: ["p2", "p3", "p4", "p5"]
24
+ ROI_BOX_HEAD:
25
+ NAME: "FastRCNNConvFCHead"
26
+ NUM_FC: 2
27
+ POOLER_RESOLUTION: 7
28
+ ROI_MASK_HEAD:
29
+ NAME: "MaskRCNNConvUpsampleHead"
30
+ NUM_CONV: 4
31
+ POOLER_RESOLUTION: 14
32
+ DATASETS:
33
+ TRAIN: ("coco_2017_train",)
34
+ TEST: ("coco_2017_val",)
35
+ SOLVER:
36
+ IMS_PER_BATCH: 16
37
+ BASE_LR: 0.02
38
+ STEPS: (60000, 80000)
39
+ MAX_ITER: 90000
40
+ INPUT:
41
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
42
+ VERSION: 2
crp_locator_utils/login_finder/configs/bases/Base-RetinaNet.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MODEL:
2
+ META_ARCHITECTURE: "RetinaNet"
3
+ BACKBONE:
4
+ NAME: "build_retinanet_resnet_fpn_backbone"
5
+ RESNETS:
6
+ OUT_FEATURES: ["res3", "res4", "res5"]
7
+ ANCHOR_GENERATOR:
8
+ SIZES:
9
+ !!python/object/apply:eval [
10
+ "[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]",
11
+ ]
12
+ FPN:
13
+ IN_FEATURES: ["res3", "res4", "res5"]
14
+ RETINANET:
15
+ IOU_THRESHOLDS: [0.4, 0.5]
16
+ IOU_LABELS: [0, -1, 1]
17
+ SMOOTH_L1_LOSS_BETA: 0.0
18
+ DATASETS:
19
+ TRAIN: ("coco_2017_train",)
20
+ TEST: ("coco_2017_val",)
21
+ SOLVER:
22
+ IMS_PER_BATCH: 16
23
+ BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
24
+ STEPS: (60000, 80000)
25
+ MAX_ITER: 90000
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
28
+ VERSION: 2
crp_locator_utils/login_finder/configs/bases/__init__.py ADDED
File without changes
crp_locator_utils/login_finder/configs/faster_rcnn_login_RPN.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ RPN:
15
+ POST_NMS_TOPK_TEST: 5000 # increase number of regions, default is 1000
16
+
17
+ DATASETS:
18
+ TRAIN: ("login_train",)
19
+ TEST: ("login_test",)
20
+
21
+ DATALOADER:
22
+ NUM_WORKERS: 0
23
+
24
+ SOLVER:
25
+ IMS_PER_BATCH: 8 # Batch size; Default 16
26
+ BASE_LR: 0.00001
27
+ # (2/3, 8/9)
28
+ STEPS: (20000, 26666) # The iteration number to decrease learning rate by GAMMA.
29
+ MAX_ITER: 30000 # Number of training iterations
30
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
31
+
32
+ INPUT:
33
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
34
+
35
+ TEST:
36
+ # The period (in terms of steps) to evaluate the model during training.
37
+ # Set to 0 to disable.
38
+ EVAL_PERIOD: 2000
39
+
40
+ OUTPUT_DIR: "./output/lr0.00001_nocheat" # Specify output directory
41
+
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.00001.yaml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("login_train",)
16
+ TEST: ("login_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.00001
22
+ # (2/3, 8/9)
23
+ STEPS: (20000, 26666) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 30000 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 2000
32
+ OUTPUT_DIR: "./output/lr0.00001_nocheat" # Specify output directory
33
+
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.00001_aug.yaml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("login_train_aug",)
16
+ TEST: ("login_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.00001
22
+ # (2/3, 8/9)
23
+ STEPS: (26666, 35555) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 40000 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 2000
32
+ OUTPUT_DIR: "./output/lr0.00001_aug" # Specify output directory
33
+
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.00001_finetune.yaml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "./output/lr0.001_aug/model_final.pth"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("login_train",)
16
+ TEST: ("login_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.00001
22
+ # (2/3, 8/9)
23
+ STEPS: (12000, 16000) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 18000 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 2000
32
+ OUTPUT_DIR: "./output/lr0.00001_finetune" # Specify output directory
33
+
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.0001.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("login_train",)
16
+ TEST: ("login_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.0001
22
+ # (2/3, 8/9)
23
+ STEPS: (20000, 26666) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 30000 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 2000
32
+ OUTPUT_DIR: "./output/lr0.0001_nocheat" # Specify output directory
33
+
34
+
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.0001_aug.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("login_train_aug",)
16
+ TEST: ("login_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.0001
22
+ # (2/3, 8/9)
23
+ STEPS: (26666, 35555) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 40000 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 2000
32
+ OUTPUT_DIR: "./output/lr0.0001_aug" # Specify output directory
33
+
34
+
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.0001_finetune.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "./output/lr0.001_aug/model_final.pth"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("login_train",)
16
+ TEST: ("login_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.0001
22
+ # (2/3, 8/9)
23
+ STEPS: (12000, 16000) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 18000 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 2000
32
+ OUTPUT_DIR: "./output/lr0.0001_finetune" # Specify output directory
33
+
34
+
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.001.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("login_train",)
16
+ TEST: ("login_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.001
22
+ # (2/3, 8/9)
23
+ STEPS: (20000, 26666) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 30000 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 2000
32
+ OUTPUT_DIR: "./output/lr0.001_nocheat" # Specify output directory
33
+
34
+
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.001_aug.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("login_train_aug",)
16
+ TEST: ("login_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.001
22
+ # (2/3, 8/9)
23
+ STEPS: (26666, 35555) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 40000 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 2000
32
+ OUTPUT_DIR: "./output/lr0.001_aug" # Specify output directory
33
+
34
+
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.001_finetune.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "./output/lr0.001_aug/model_final.pth"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("login_train",)
16
+ TEST: ("login_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.001
22
+ # (2/3, 8/9)
23
+ STEPS: (12000, 16000) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 18000 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 2000
32
+ OUTPUT_DIR: "./output/lr0.001_finetune" # Specify output directory
33
+
34
+
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.01.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("login_train",)
16
+ TEST: ("login_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.01
22
+ # (2/3, 8/9)
23
+ STEPS: (20000, 26666) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 30000 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 2000
32
+ OUTPUT_DIR: "./output/lr0.01_nocheat" # Specify output directory
33
+
34
+
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.01_aug.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("login_train_aug",)
16
+ TEST: ("login_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.01
22
+ # (2/3, 8/9)
23
+ STEPS: (26666, 35555) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 40000 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 2000
32
+ OUTPUT_DIR: "./output/lr0.01_aug" # Specify output directory
33
+
34
+
crp_locator_utils/login_finder/configs/faster_rcnn_login_lr0.01_finetune.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./bases/Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ # COCO ResNet50 weights
4
+ WEIGHTS: "https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
5
+ MASK_ON: False # Not doing segmentation
6
+ RESNETS:
7
+ DEPTH: 50 # ResNet50
8
+ ROI_HEADS:
9
+ NUM_CLASSES: 1 # Change to suit own task
10
+ # Can reduce this for lower memory/faster training; Default 512
11
+ BATCH_SIZE_PER_IMAGE: 512
12
+ BACKBONE:
13
+ FREEZE_AT: 2 # Default 2
14
+ DATASETS:
15
+ TRAIN: ("login_train",)
16
+ TEST: ("login_test",)
17
+ DATALOADER:
18
+ NUM_WORKERS: 0
19
+ SOLVER:
20
+ IMS_PER_BATCH: 8 # Batch size; Default 16
21
+ BASE_LR: 0.01
22
+ # (2/3, 8/9)
23
+ STEPS: (4000, 5333) # The iteration number to decrease learning rate by GAMMA.
24
+ MAX_ITER: 6000 # Number of training iterations
25
+ CHECKPOINT_PERIOD: 4000 # Saves checkpoint every number of steps
26
+ INPUT:
27
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) # Image input sizes
28
+ TEST:
29
+ # The period (in terms of steps) to evaluate the model during training.
30
+ # Set to 0 to disable.
31
+ EVAL_PERIOD: 2000
32
+ OUTPUT_DIR: "./output/lr0.01_finetune" # Specify output directory
33
+
34
+
crp_locator_utils/login_finder/output/lr0.001_finetune/model_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc8c0aea58fa48a9eba195bcdb80f03163e9737d42ada675e1d3c4d815235565
3
+ size 329981096
phishpedia_siamese/domain_map.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f30fb3282e9defb7f464bb0abb5d1ffa9bc6839b244097badaf401d13217d80a
3
+ size 220978
phishpedia_siamese/expand_targetlist.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1f8062f18a11b0c255910da034534e5d412b5725d800e983fc6dbc71b2d83b9
3
+ size 212573017