Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1489.84 +/- 108.94
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63bc0654bebe3aa8429579f0d749ebeb2847b44a4a3e75647c0b2129a86751ae
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a89b16310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a89b163a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a89b16430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a89b164c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1a89b16550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1a89b165e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a89b16670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a89b16700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1a89b16790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a89b16820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a89b168b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a89b16940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f1a89b0ec00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674139370044933471,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHLDQD+dGYe/Z0IWv/v5kz+FnRvAiHa9Py8ao72yXl2/Lt1uPuUMLEB945M/ALuOvzst8D7GaJQ/m5XRPt6FXDyROJs/IwvwvCjIN78klVe/JnGJP9ztcLyKPRE/V1oDwLc09T5LEK8+fKAWP+Nkg7/J7iM/e0wxvrFODj/9K1M9gOkQv+5iez8B0oy+DBE+v0gp474oyms/cOiQP2vW0T0x56K/ROb1PSU+0T5QlwA9LcFZP/Noxr7RjD2/5tedvgmxVz95IHO/QFRIP/j9/L63NPU+SxCvPnygFj/jZIO/rFVxP7fHsL1WJhs/HYc8vvAskz63gC0/9kyHPC4OQj+qQgi/TNWqPujGCz43ncA+DGfXvsmGtLy2VGO/O6OEvyNomT95GCO+F7YBwOB1YTxbPGc/Cfgtvyp83z4FlcG+tzT1PksQrz58oBY/HGN5PzFsnz8JIAk+Iso2PzzGuz+D/FU/kdKWPEBOYr4p07E+k8M+v2cnIr/O/w4/DyQ0v+4VM7+RrfW+XI8Lv29mQcCseL+/goFsP2bbxr8ILOs+gncLP8VGLcARqxC/8PZsv7c09T5LEK8+fKAWP+Nkg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD8BqU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJUgivQAAAADjYvW/AAAAANhClD0AAAAAnoz9PwAAAABbVkM9AAAAALlO5T8AAAAAB09TvQAAAABTndu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1PhstgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFk0sbsAAAAAESkBwAAAAAACn9q9AAAAAKEi9T8AAAAAbfOFvQAAAAA5TPc/AAAAAL7wRbwAAAAAgP3bvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKFZLrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDYtLa9AAAAAPv1/78AAAAADYBJvAAAAADLye4/AAAAAP1Yx70AAAAAGCIAQAAAAADxgeQ7AAAAALKP7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNyyG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6oPnPQAAAAAHj+K/AAAAALkkDD0AAAAAbXr2PwAAAADPRJu9AAAAAGK09D8AAAAApWNKvQAAAADycN2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJOfx/qgRK+MAWyUTegDjAF0lEdAq2S68an753V9lChoBkdAl3EY8EFGG2gHTegDaAhHQKtlDC0F8oh1fZQoaAZHQJf4dG9YfXBoB03oA2gIR0CrZuXM6ij+dX2UKGgGR0CYs1+w1R+CaAdN6ANoCEdAq20rw+dK/XV9lChoBkdAl7NFnRLK3mgHTegDaAhHQKtw19w3o9t1fZQoaAZHQJh7oC4jKPpoB03oA2gIR0CrcSiPQv6CdX2UKGgGR0CYOea6z3RHaAdN6ANoCEdAq3Lov114gXV9lChoBkdAlrZrHyVfNWgHTegDaAhHQKt5WDIRywR1fZQoaAZHQJZEU0CRwIdoB03oA2gIR0CrfQeLNwBHdX2UKGgGR0CXdNTvy9VWaAdN6ANoCEdAq31caAFxGXV9lChoBkdAlpw/jS5RTGgHTegDaAhHQKt/Jk/bCaZ1fZQoaAZHQJZgRhVlwtJoB03oA2gIR0CrhWCcf/3ndX2UKGgGR0CWl8bmlqJuaAdN6ANoCEdAq4kPms/6f3V9lChoBkdAln26SDAaemgHTegDaAhHQKuJZGaQV9F1fZQoaAZHQJaGWHWSU1RoB03oA2gIR0Criy5nctXgdX2UKGgGR0CYPHzd1uBMaAdN6ANoCEdAq5GSfUWl/HV9lChoBkdAl/HK2a2F4GgHTegDaAhHQKuVUo1k1/F1fZQoaAZHQJe5yn+AEuBoB03oA2gIR0CrlaJ2MbWFdX2UKGgGR0CZaWW1MM7VaAdN6ANoCEdAq5d1QoCuEHV9lChoBkdAmMye3x4IKWgHTegDaAhHQKudz9ZzPrx1fZQoaAZHQJkQJugpSaVoB03oA2gIR0Crog/f4yoGdX2UKGgGR0CUgbfKp1ifaAdN6ANoCEdAq6KKXUpd8nV9lChoBkdAmPK/WpZOi2gHTegDaAhHQKulIgvlEJB1fZQoaAZHQJYv6/wiJO5oB03oA2gIR0CrrSMZgogFdX2UKGgGR0CWa+EyckMTaAdN6ANoCEdAq7Dd58jRlnV9lChoBkdAlhuq2nbZe2gHTegDaAhHQKuxQXJHRTl1fZQoaAZHQJIrBotcv/RoB03oA2gIR0CrswUYCQtBdX2UKGgGR0CWZzgwXZXdaAdN6ANoCEdAq7lKc0+C9XV9lChoBkdAk9F9F8XvY2gHTegDaAhHQKu8+yLyc1B1fZQoaAZHQJaaWZSeiBZoB03oA2gIR0CrvVHEVFhHdX2UKGgGR0CWNVc/MW43aAdN6ANoCEdAq78idH2AXnV9lChoBkdAl/TTSXt0FWgHTegDaAhHQKvFbPmgam51fZQoaAZHQJfu9UxVQyhoB03oA2gIR0CryRpAMUh3dX2UKGgGR0CWzL1c+qzaaAdN6ANoCEdAq8lvJtBOYnV9lChoBkdAl9W5mukk8mgHTegDaAhHQKvLPR9gF5h1fZQoaAZHQJhDqflIVdpoB03oA2gIR0Cr0YgBLf1pdX2UKGgGR0CVHN+Eh7mdaAdN6ANoCEdAq9UxsGgSOHV9lChoBkdAl6gJ5AyEc2gHTegDaAhHQKvVhNZeRgZ1fZQoaAZHQJegj4AS39doB03oA2gIR0Cr10sRxtHhdX2UKGgGR0CRGd1OCXhPaAdN6ANoCEdAq92+zWwu/XV9lChoBkdAk4HoKpkwvmgHTegDaAhHQKvhhesPrfN1fZQoaAZHQJmLhfKISDhoB03oA2gIR0Cr4dgNoakzdX2UKGgGR0CRycpNbkfcaAdN6ANoCEdAq+OiTnq3VnV9lChoBkdAk6jHnZCfH2gHTegDaAhHQKvp9WUbDMx1fZQoaAZHQJnQoRcu8K5oB03oA2gIR0Cr7ZrLyMDPdX2UKGgGR0CYR67laKUFaAdN6ANoCEdAq+38Rg7YCnV9lChoBkdAl8HLYbsF+2gHTegDaAhHQKvv1qlgtvp1fZQoaAZHQJgZ5TfixV1oB03oA2gIR0Cr9h4+B6KMdX2UKGgGR0CV7HophF3IaAdN6ANoCEdAq/nFwT/Q0HV9lChoBkdAl1Sb961LJ2gHTegDaAhHQKv6GVUMoc91fZQoaAZHQJhyk75mAb1oB03oA2gIR0Cr++IzN2TxdX2UKGgGR0CYhV8BuGbkaAdN6ANoCEdArAIQqmTC+HV9lChoBkdAmF5HeFcps2gHTegDaAhHQKwFuebutwJ1fZQoaAZHQJeMyG21D0FoB03oA2gIR0CsBg0VSGahdX2UKGgGR0CY73IRh+fAaAdN6ANoCEdArAff9JjDsXV9lChoBkdAk1htQCSzPmgHTegDaAhHQKwOLIsiB5J1fZQoaAZHQJeLl3kgfU5oB03oA2gIR0CsEe5zgdfcdX2UKGgGR0CXWrgdfb9IaAdN6ANoCEdArBJDOZ9d/3V9lChoBkdAlhD+WOZLI2gHTegDaAhHQKwUCQGwA2h1fZQoaAZHQJV0QF0PpY9oB03oA2gIR0CsGm+WWyC4dX2UKGgGR0CUd2Wt2cJ/aAdN6ANoCEdArB5BzDGcWnV9lChoBkdAk9QEwJw84mgHTegDaAhHQKwelZg5R0l1fZQoaAZHQJUZH0L+glFoB03oA2gIR0CsIGgRTS9edX2UKGgGR0CU6VhsZYPoaAdN6ANoCEdArCa+lEZzgnV9lChoBkdAmNY+nuRcNmgHTegDaAhHQKwqoKLsKLN1fZQoaAZHQJjIQE6kqMFoB03oA2gIR0CsKvUFr2xqdX2UKGgGR0CX8NaG5+YuaAdN6ANoCEdArCzO+M6zV3V9lChoBkdAjgzVtGd7OWgHTegDaAhHQKw1PbmEGqx1fZQoaAZHQJEpNIlMRHxoB03oA2gIR0CsOf+aKDTSdX2UKGgGR0CYvE0WuX/paAdN6ANoCEdArDpQBmwqzHV9lChoBkdAkSvh15jYqWgHTegDaAhHQKw8G4vvjOt1fZQoaAZHQJiR9uZThpBoB03oA2gIR0CsQn76pHZsdX2UKGgGR0CY8AMfA9FGaAdN6ANoCEdArEZPkWAPNHV9lChoBkdAmYC6Jyhi9mgHTegDaAhHQKxGob0e2eB1fZQoaAZHQJeKaVqveP9oB03oA2gIR0CsSGNvOyE+dX2UKGgGR0CX6sAZbY9QaAdN6ANoCEdArE6Z6dDpknV9lChoBkdAlmwWeYlY2mgHTegDaAhHQKxSUDgZTAF1fZQoaAZHQJXBWml67d1oB03oA2gIR0CsUqGlANXpdX2UKGgGR0CXhkR7JGONaAdN6ANoCEdArFR0cGTs6nV9lChoBkdAlx1VnqVyFWgHTegDaAhHQKxa5DQZ4wB1fZQoaAZHQJU9OXlbNbFoB03oA2gIR0CsXrZV4oqkdX2UKGgGR0CUr+VeruIAaAdN6ANoCEdArF8LdP+GXXV9lChoBkdAlM4awIMSb2gHTegDaAhHQKxg3SDRMOB1fZQoaAZHQJSavSThYNloB03oA2gIR0CsZ2HGKhtcdX2UKGgGR0CUQ3E+xGDuaAdN6ANoCEdArGsyy8jAz3V9lChoBkdAlZqWexwAEWgHTegDaAhHQKxri79ycTd1fZQoaAZHQJRs3CP6sQxoB03oA2gIR0CsbWqcmShbdX2UKGgGR0CUL/6dDpkgaAdN6ANoCEdArHPQeRxLkHV9lChoBkdAl4NnTd+G5GgHTegDaAhHQKx3i40dilV1fZQoaAZHQJTSO9lEqlRoB03oA2gIR0Csd+EYfnwHdX2UKGgGR0CWx4rsByS3aAdN6ANoCEdArHmriKiwjnV9lChoBkdAlGqvyXlbNmgHTegDaAhHQKyACOby6MB1fZQoaAZHQJdiU/6frbBoB03oA2gIR0Csg9xeC04SdX2UKGgGR0CWVFbc45tFaAdN6ANoCEdArIQttALRbHV9lChoBkdAlVwGzF+/g2gHTegDaAhHQKyGCGcnVoZ1fZQoaAZHQJTuOyGBWghoB03oA2gIR0CsjJ6zE74jdX2UKGgGR0CTo18/D+BIaAdN6ANoCEdArJBtA7gbZXV9lChoBkdAltfAjQiRn2gHTegDaAhHQKyQvdQfp2V1fZQoaAZHQJVrzs5XEIhoB03oA2gIR0CskpMN+b3HdX2UKGgGR0CWaK1eSjgyaAdN6ANoCEdArJkNBY3eenVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de2514bc4f8b504b3ee50ad4a53eeff1c6d0c8dd52087df210081d6279abd5b8
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1188ecd6f4a285df05d82784f431ecf2cb557ea56f84772da8d58070c2f2530
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a89b16310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a89b163a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a89b16430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a89b164c0>", "_build": "<function ActorCriticPolicy._build at 0x7f1a89b16550>", "forward": "<function ActorCriticPolicy.forward at 0x7f1a89b165e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a89b16670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a89b16700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1a89b16790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a89b16820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a89b168b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a89b16940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1a89b0ec00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674139370044933471, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHLDQD+dGYe/Z0IWv/v5kz+FnRvAiHa9Py8ao72yXl2/Lt1uPuUMLEB945M/ALuOvzst8D7GaJQ/m5XRPt6FXDyROJs/IwvwvCjIN78klVe/JnGJP9ztcLyKPRE/V1oDwLc09T5LEK8+fKAWP+Nkg7/J7iM/e0wxvrFODj/9K1M9gOkQv+5iez8B0oy+DBE+v0gp474oyms/cOiQP2vW0T0x56K/ROb1PSU+0T5QlwA9LcFZP/Noxr7RjD2/5tedvgmxVz95IHO/QFRIP/j9/L63NPU+SxCvPnygFj/jZIO/rFVxP7fHsL1WJhs/HYc8vvAskz63gC0/9kyHPC4OQj+qQgi/TNWqPujGCz43ncA+DGfXvsmGtLy2VGO/O6OEvyNomT95GCO+F7YBwOB1YTxbPGc/Cfgtvyp83z4FlcG+tzT1PksQrz58oBY/HGN5PzFsnz8JIAk+Iso2PzzGuz+D/FU/kdKWPEBOYr4p07E+k8M+v2cnIr/O/w4/DyQ0v+4VM7+RrfW+XI8Lv29mQcCseL+/goFsP2bbxr8ILOs+gncLP8VGLcARqxC/8PZsv7c09T5LEK8+fKAWP+Nkg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD8BqU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJUgivQAAAADjYvW/AAAAANhClD0AAAAAnoz9PwAAAABbVkM9AAAAALlO5T8AAAAAB09TvQAAAABTndu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1PhstgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFk0sbsAAAAAESkBwAAAAAACn9q9AAAAAKEi9T8AAAAAbfOFvQAAAAA5TPc/AAAAAL7wRbwAAAAAgP3bvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKFZLrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDYtLa9AAAAAPv1/78AAAAADYBJvAAAAADLye4/AAAAAP1Yx70AAAAAGCIAQAAAAADxgeQ7AAAAALKP7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNyyG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6oPnPQAAAAAHj+K/AAAAALkkDD0AAAAAbXr2PwAAAADPRJu9AAAAAGK09D8AAAAApWNKvQAAAADycN2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJOfx/qgRK+MAWyUTegDjAF0lEdAq2S68an753V9lChoBkdAl3EY8EFGG2gHTegDaAhHQKtlDC0F8oh1fZQoaAZHQJf4dG9YfXBoB03oA2gIR0CrZuXM6ij+dX2UKGgGR0CYs1+w1R+CaAdN6ANoCEdAq20rw+dK/XV9lChoBkdAl7NFnRLK3mgHTegDaAhHQKtw19w3o9t1fZQoaAZHQJh7oC4jKPpoB03oA2gIR0CrcSiPQv6CdX2UKGgGR0CYOea6z3RHaAdN6ANoCEdAq3Lov114gXV9lChoBkdAlrZrHyVfNWgHTegDaAhHQKt5WDIRywR1fZQoaAZHQJZEU0CRwIdoB03oA2gIR0CrfQeLNwBHdX2UKGgGR0CXdNTvy9VWaAdN6ANoCEdAq31caAFxGXV9lChoBkdAlpw/jS5RTGgHTegDaAhHQKt/Jk/bCaZ1fZQoaAZHQJZgRhVlwtJoB03oA2gIR0CrhWCcf/3ndX2UKGgGR0CWl8bmlqJuaAdN6ANoCEdAq4kPms/6f3V9lChoBkdAln26SDAaemgHTegDaAhHQKuJZGaQV9F1fZQoaAZHQJaGWHWSU1RoB03oA2gIR0Criy5nctXgdX2UKGgGR0CYPHzd1uBMaAdN6ANoCEdAq5GSfUWl/HV9lChoBkdAl/HK2a2F4GgHTegDaAhHQKuVUo1k1/F1fZQoaAZHQJe5yn+AEuBoB03oA2gIR0CrlaJ2MbWFdX2UKGgGR0CZaWW1MM7VaAdN6ANoCEdAq5d1QoCuEHV9lChoBkdAmMye3x4IKWgHTegDaAhHQKudz9ZzPrx1fZQoaAZHQJkQJugpSaVoB03oA2gIR0Crog/f4yoGdX2UKGgGR0CUgbfKp1ifaAdN6ANoCEdAq6KKXUpd8nV9lChoBkdAmPK/WpZOi2gHTegDaAhHQKulIgvlEJB1fZQoaAZHQJYv6/wiJO5oB03oA2gIR0CrrSMZgogFdX2UKGgGR0CWa+EyckMTaAdN6ANoCEdAq7Dd58jRlnV9lChoBkdAlhuq2nbZe2gHTegDaAhHQKuxQXJHRTl1fZQoaAZHQJIrBotcv/RoB03oA2gIR0CrswUYCQtBdX2UKGgGR0CWZzgwXZXdaAdN6ANoCEdAq7lKc0+C9XV9lChoBkdAk9F9F8XvY2gHTegDaAhHQKu8+yLyc1B1fZQoaAZHQJaaWZSeiBZoB03oA2gIR0CrvVHEVFhHdX2UKGgGR0CWNVc/MW43aAdN6ANoCEdAq78idH2AXnV9lChoBkdAl/TTSXt0FWgHTegDaAhHQKvFbPmgam51fZQoaAZHQJfu9UxVQyhoB03oA2gIR0CryRpAMUh3dX2UKGgGR0CWzL1c+qzaaAdN6ANoCEdAq8lvJtBOYnV9lChoBkdAl9W5mukk8mgHTegDaAhHQKvLPR9gF5h1fZQoaAZHQJhDqflIVdpoB03oA2gIR0Cr0YgBLf1pdX2UKGgGR0CVHN+Eh7mdaAdN6ANoCEdAq9UxsGgSOHV9lChoBkdAl6gJ5AyEc2gHTegDaAhHQKvVhNZeRgZ1fZQoaAZHQJegj4AS39doB03oA2gIR0Cr10sRxtHhdX2UKGgGR0CRGd1OCXhPaAdN6ANoCEdAq92+zWwu/XV9lChoBkdAk4HoKpkwvmgHTegDaAhHQKvhhesPrfN1fZQoaAZHQJmLhfKISDhoB03oA2gIR0Cr4dgNoakzdX2UKGgGR0CRycpNbkfcaAdN6ANoCEdAq+OiTnq3VnV9lChoBkdAk6jHnZCfH2gHTegDaAhHQKvp9WUbDMx1fZQoaAZHQJnQoRcu8K5oB03oA2gIR0Cr7ZrLyMDPdX2UKGgGR0CYR67laKUFaAdN6ANoCEdAq+38Rg7YCnV9lChoBkdAl8HLYbsF+2gHTegDaAhHQKvv1qlgtvp1fZQoaAZHQJgZ5TfixV1oB03oA2gIR0Cr9h4+B6KMdX2UKGgGR0CV7HophF3IaAdN6ANoCEdAq/nFwT/Q0HV9lChoBkdAl1Sb961LJ2gHTegDaAhHQKv6GVUMoc91fZQoaAZHQJhyk75mAb1oB03oA2gIR0Cr++IzN2TxdX2UKGgGR0CYhV8BuGbkaAdN6ANoCEdArAIQqmTC+HV9lChoBkdAmF5HeFcps2gHTegDaAhHQKwFuebutwJ1fZQoaAZHQJeMyG21D0FoB03oA2gIR0CsBg0VSGahdX2UKGgGR0CY73IRh+fAaAdN6ANoCEdArAff9JjDsXV9lChoBkdAk1htQCSzPmgHTegDaAhHQKwOLIsiB5J1fZQoaAZHQJeLl3kgfU5oB03oA2gIR0CsEe5zgdfcdX2UKGgGR0CXWrgdfb9IaAdN6ANoCEdArBJDOZ9d/3V9lChoBkdAlhD+WOZLI2gHTegDaAhHQKwUCQGwA2h1fZQoaAZHQJV0QF0PpY9oB03oA2gIR0CsGm+WWyC4dX2UKGgGR0CUd2Wt2cJ/aAdN6ANoCEdArB5BzDGcWnV9lChoBkdAk9QEwJw84mgHTegDaAhHQKwelZg5R0l1fZQoaAZHQJUZH0L+glFoB03oA2gIR0CsIGgRTS9edX2UKGgGR0CU6VhsZYPoaAdN6ANoCEdArCa+lEZzgnV9lChoBkdAmNY+nuRcNmgHTegDaAhHQKwqoKLsKLN1fZQoaAZHQJjIQE6kqMFoB03oA2gIR0CsKvUFr2xqdX2UKGgGR0CX8NaG5+YuaAdN6ANoCEdArCzO+M6zV3V9lChoBkdAjgzVtGd7OWgHTegDaAhHQKw1PbmEGqx1fZQoaAZHQJEpNIlMRHxoB03oA2gIR0CsOf+aKDTSdX2UKGgGR0CYvE0WuX/paAdN6ANoCEdArDpQBmwqzHV9lChoBkdAkSvh15jYqWgHTegDaAhHQKw8G4vvjOt1fZQoaAZHQJiR9uZThpBoB03oA2gIR0CsQn76pHZsdX2UKGgGR0CY8AMfA9FGaAdN6ANoCEdArEZPkWAPNHV9lChoBkdAmYC6Jyhi9mgHTegDaAhHQKxGob0e2eB1fZQoaAZHQJeKaVqveP9oB03oA2gIR0CsSGNvOyE+dX2UKGgGR0CX6sAZbY9QaAdN6ANoCEdArE6Z6dDpknV9lChoBkdAlmwWeYlY2mgHTegDaAhHQKxSUDgZTAF1fZQoaAZHQJXBWml67d1oB03oA2gIR0CsUqGlANXpdX2UKGgGR0CXhkR7JGONaAdN6ANoCEdArFR0cGTs6nV9lChoBkdAlx1VnqVyFWgHTegDaAhHQKxa5DQZ4wB1fZQoaAZHQJU9OXlbNbFoB03oA2gIR0CsXrZV4oqkdX2UKGgGR0CUr+VeruIAaAdN6ANoCEdArF8LdP+GXXV9lChoBkdAlM4awIMSb2gHTegDaAhHQKxg3SDRMOB1fZQoaAZHQJSavSThYNloB03oA2gIR0CsZ2HGKhtcdX2UKGgGR0CUQ3E+xGDuaAdN6ANoCEdArGsyy8jAz3V9lChoBkdAlZqWexwAEWgHTegDaAhHQKxri79ycTd1fZQoaAZHQJRs3CP6sQxoB03oA2gIR0CsbWqcmShbdX2UKGgGR0CUL/6dDpkgaAdN6ANoCEdArHPQeRxLkHV9lChoBkdAl4NnTd+G5GgHTegDaAhHQKx3i40dilV1fZQoaAZHQJTSO9lEqlRoB03oA2gIR0Csd+EYfnwHdX2UKGgGR0CWx4rsByS3aAdN6ANoCEdArHmriKiwjnV9lChoBkdAlGqvyXlbNmgHTegDaAhHQKyACOby6MB1fZQoaAZHQJdiU/6frbBoB03oA2gIR0Csg9xeC04SdX2UKGgGR0CWVFbc45tFaAdN6ANoCEdArIQttALRbHV9lChoBkdAlVwGzF+/g2gHTegDaAhHQKyGCGcnVoZ1fZQoaAZHQJTuOyGBWghoB03oA2gIR0CsjJ6zE74jdX2UKGgGR0CTo18/D+BIaAdN6ANoCEdArJBtA7gbZXV9lChoBkdAltfAjQiRn2gHTegDaAhHQKyQvdQfp2V1fZQoaAZHQJVrzs5XEIhoB03oA2gIR0CskpMN+b3HdX2UKGgGR0CWaK1eSjgyaAdN6ANoCEdArJkNBY3eenVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cc4cdd7c3c6f5007495df75547d7ac3d0df5adbc24e3ef5e5ed4655fa7213ca
|
3 |
+
size 1119941
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1489.8407445305115, "std_reward": 108.9379348286271, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T15:41:24.676787"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a846ce7ba268bdd3fb158eff0661d2abbde2983be5f8b5119ff66b7df5390c4c
|
3 |
+
size 2521
|