cmenasse commited on
Commit
a55bf5f
·
1 Parent(s): b42e8a1

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1489.84 +/- 108.94
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63bc0654bebe3aa8429579f0d749ebeb2847b44a4a3e75647c0b2129a86751ae
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a89b16310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a89b163a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a89b16430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a89b164c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1a89b16550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1a89b165e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a89b16670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a89b16700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1a89b16790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a89b16820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a89b168b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a89b16940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f1a89b0ec00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674139370044933471,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHLDQD+dGYe/Z0IWv/v5kz+FnRvAiHa9Py8ao72yXl2/Lt1uPuUMLEB945M/ALuOvzst8D7GaJQ/m5XRPt6FXDyROJs/IwvwvCjIN78klVe/JnGJP9ztcLyKPRE/V1oDwLc09T5LEK8+fKAWP+Nkg7/J7iM/e0wxvrFODj/9K1M9gOkQv+5iez8B0oy+DBE+v0gp474oyms/cOiQP2vW0T0x56K/ROb1PSU+0T5QlwA9LcFZP/Noxr7RjD2/5tedvgmxVz95IHO/QFRIP/j9/L63NPU+SxCvPnygFj/jZIO/rFVxP7fHsL1WJhs/HYc8vvAskz63gC0/9kyHPC4OQj+qQgi/TNWqPujGCz43ncA+DGfXvsmGtLy2VGO/O6OEvyNomT95GCO+F7YBwOB1YTxbPGc/Cfgtvyp83z4FlcG+tzT1PksQrz58oBY/HGN5PzFsnz8JIAk+Iso2PzzGuz+D/FU/kdKWPEBOYr4p07E+k8M+v2cnIr/O/w4/DyQ0v+4VM7+RrfW+XI8Lv29mQcCseL+/goFsP2bbxr8ILOs+gncLP8VGLcARqxC/8PZsv7c09T5LEK8+fKAWP+Nkg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD8BqU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJUgivQAAAADjYvW/AAAAANhClD0AAAAAnoz9PwAAAABbVkM9AAAAALlO5T8AAAAAB09TvQAAAABTndu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1PhstgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFk0sbsAAAAAESkBwAAAAAACn9q9AAAAAKEi9T8AAAAAbfOFvQAAAAA5TPc/AAAAAL7wRbwAAAAAgP3bvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKFZLrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDYtLa9AAAAAPv1/78AAAAADYBJvAAAAADLye4/AAAAAP1Yx70AAAAAGCIAQAAAAADxgeQ7AAAAALKP7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNyyG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6oPnPQAAAAAHj+K/AAAAALkkDD0AAAAAbXr2PwAAAADPRJu9AAAAAGK09D8AAAAApWNKvQAAAADycN2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJOfx/qgRK+MAWyUTegDjAF0lEdAq2S68an753V9lChoBkdAl3EY8EFGG2gHTegDaAhHQKtlDC0F8oh1fZQoaAZHQJf4dG9YfXBoB03oA2gIR0CrZuXM6ij+dX2UKGgGR0CYs1+w1R+CaAdN6ANoCEdAq20rw+dK/XV9lChoBkdAl7NFnRLK3mgHTegDaAhHQKtw19w3o9t1fZQoaAZHQJh7oC4jKPpoB03oA2gIR0CrcSiPQv6CdX2UKGgGR0CYOea6z3RHaAdN6ANoCEdAq3Lov114gXV9lChoBkdAlrZrHyVfNWgHTegDaAhHQKt5WDIRywR1fZQoaAZHQJZEU0CRwIdoB03oA2gIR0CrfQeLNwBHdX2UKGgGR0CXdNTvy9VWaAdN6ANoCEdAq31caAFxGXV9lChoBkdAlpw/jS5RTGgHTegDaAhHQKt/Jk/bCaZ1fZQoaAZHQJZgRhVlwtJoB03oA2gIR0CrhWCcf/3ndX2UKGgGR0CWl8bmlqJuaAdN6ANoCEdAq4kPms/6f3V9lChoBkdAln26SDAaemgHTegDaAhHQKuJZGaQV9F1fZQoaAZHQJaGWHWSU1RoB03oA2gIR0Criy5nctXgdX2UKGgGR0CYPHzd1uBMaAdN6ANoCEdAq5GSfUWl/HV9lChoBkdAl/HK2a2F4GgHTegDaAhHQKuVUo1k1/F1fZQoaAZHQJe5yn+AEuBoB03oA2gIR0CrlaJ2MbWFdX2UKGgGR0CZaWW1MM7VaAdN6ANoCEdAq5d1QoCuEHV9lChoBkdAmMye3x4IKWgHTegDaAhHQKudz9ZzPrx1fZQoaAZHQJkQJugpSaVoB03oA2gIR0Crog/f4yoGdX2UKGgGR0CUgbfKp1ifaAdN6ANoCEdAq6KKXUpd8nV9lChoBkdAmPK/WpZOi2gHTegDaAhHQKulIgvlEJB1fZQoaAZHQJYv6/wiJO5oB03oA2gIR0CrrSMZgogFdX2UKGgGR0CWa+EyckMTaAdN6ANoCEdAq7Dd58jRlnV9lChoBkdAlhuq2nbZe2gHTegDaAhHQKuxQXJHRTl1fZQoaAZHQJIrBotcv/RoB03oA2gIR0CrswUYCQtBdX2UKGgGR0CWZzgwXZXdaAdN6ANoCEdAq7lKc0+C9XV9lChoBkdAk9F9F8XvY2gHTegDaAhHQKu8+yLyc1B1fZQoaAZHQJaaWZSeiBZoB03oA2gIR0CrvVHEVFhHdX2UKGgGR0CWNVc/MW43aAdN6ANoCEdAq78idH2AXnV9lChoBkdAl/TTSXt0FWgHTegDaAhHQKvFbPmgam51fZQoaAZHQJfu9UxVQyhoB03oA2gIR0CryRpAMUh3dX2UKGgGR0CWzL1c+qzaaAdN6ANoCEdAq8lvJtBOYnV9lChoBkdAl9W5mukk8mgHTegDaAhHQKvLPR9gF5h1fZQoaAZHQJhDqflIVdpoB03oA2gIR0Cr0YgBLf1pdX2UKGgGR0CVHN+Eh7mdaAdN6ANoCEdAq9UxsGgSOHV9lChoBkdAl6gJ5AyEc2gHTegDaAhHQKvVhNZeRgZ1fZQoaAZHQJegj4AS39doB03oA2gIR0Cr10sRxtHhdX2UKGgGR0CRGd1OCXhPaAdN6ANoCEdAq92+zWwu/XV9lChoBkdAk4HoKpkwvmgHTegDaAhHQKvhhesPrfN1fZQoaAZHQJmLhfKISDhoB03oA2gIR0Cr4dgNoakzdX2UKGgGR0CRycpNbkfcaAdN6ANoCEdAq+OiTnq3VnV9lChoBkdAk6jHnZCfH2gHTegDaAhHQKvp9WUbDMx1fZQoaAZHQJnQoRcu8K5oB03oA2gIR0Cr7ZrLyMDPdX2UKGgGR0CYR67laKUFaAdN6ANoCEdAq+38Rg7YCnV9lChoBkdAl8HLYbsF+2gHTegDaAhHQKvv1qlgtvp1fZQoaAZHQJgZ5TfixV1oB03oA2gIR0Cr9h4+B6KMdX2UKGgGR0CV7HophF3IaAdN6ANoCEdAq/nFwT/Q0HV9lChoBkdAl1Sb961LJ2gHTegDaAhHQKv6GVUMoc91fZQoaAZHQJhyk75mAb1oB03oA2gIR0Cr++IzN2TxdX2UKGgGR0CYhV8BuGbkaAdN6ANoCEdArAIQqmTC+HV9lChoBkdAmF5HeFcps2gHTegDaAhHQKwFuebutwJ1fZQoaAZHQJeMyG21D0FoB03oA2gIR0CsBg0VSGahdX2UKGgGR0CY73IRh+fAaAdN6ANoCEdArAff9JjDsXV9lChoBkdAk1htQCSzPmgHTegDaAhHQKwOLIsiB5J1fZQoaAZHQJeLl3kgfU5oB03oA2gIR0CsEe5zgdfcdX2UKGgGR0CXWrgdfb9IaAdN6ANoCEdArBJDOZ9d/3V9lChoBkdAlhD+WOZLI2gHTegDaAhHQKwUCQGwA2h1fZQoaAZHQJV0QF0PpY9oB03oA2gIR0CsGm+WWyC4dX2UKGgGR0CUd2Wt2cJ/aAdN6ANoCEdArB5BzDGcWnV9lChoBkdAk9QEwJw84mgHTegDaAhHQKwelZg5R0l1fZQoaAZHQJUZH0L+glFoB03oA2gIR0CsIGgRTS9edX2UKGgGR0CU6VhsZYPoaAdN6ANoCEdArCa+lEZzgnV9lChoBkdAmNY+nuRcNmgHTegDaAhHQKwqoKLsKLN1fZQoaAZHQJjIQE6kqMFoB03oA2gIR0CsKvUFr2xqdX2UKGgGR0CX8NaG5+YuaAdN6ANoCEdArCzO+M6zV3V9lChoBkdAjgzVtGd7OWgHTegDaAhHQKw1PbmEGqx1fZQoaAZHQJEpNIlMRHxoB03oA2gIR0CsOf+aKDTSdX2UKGgGR0CYvE0WuX/paAdN6ANoCEdArDpQBmwqzHV9lChoBkdAkSvh15jYqWgHTegDaAhHQKw8G4vvjOt1fZQoaAZHQJiR9uZThpBoB03oA2gIR0CsQn76pHZsdX2UKGgGR0CY8AMfA9FGaAdN6ANoCEdArEZPkWAPNHV9lChoBkdAmYC6Jyhi9mgHTegDaAhHQKxGob0e2eB1fZQoaAZHQJeKaVqveP9oB03oA2gIR0CsSGNvOyE+dX2UKGgGR0CX6sAZbY9QaAdN6ANoCEdArE6Z6dDpknV9lChoBkdAlmwWeYlY2mgHTegDaAhHQKxSUDgZTAF1fZQoaAZHQJXBWml67d1oB03oA2gIR0CsUqGlANXpdX2UKGgGR0CXhkR7JGONaAdN6ANoCEdArFR0cGTs6nV9lChoBkdAlx1VnqVyFWgHTegDaAhHQKxa5DQZ4wB1fZQoaAZHQJU9OXlbNbFoB03oA2gIR0CsXrZV4oqkdX2UKGgGR0CUr+VeruIAaAdN6ANoCEdArF8LdP+GXXV9lChoBkdAlM4awIMSb2gHTegDaAhHQKxg3SDRMOB1fZQoaAZHQJSavSThYNloB03oA2gIR0CsZ2HGKhtcdX2UKGgGR0CUQ3E+xGDuaAdN6ANoCEdArGsyy8jAz3V9lChoBkdAlZqWexwAEWgHTegDaAhHQKxri79ycTd1fZQoaAZHQJRs3CP6sQxoB03oA2gIR0CsbWqcmShbdX2UKGgGR0CUL/6dDpkgaAdN6ANoCEdArHPQeRxLkHV9lChoBkdAl4NnTd+G5GgHTegDaAhHQKx3i40dilV1fZQoaAZHQJTSO9lEqlRoB03oA2gIR0Csd+EYfnwHdX2UKGgGR0CWx4rsByS3aAdN6ANoCEdArHmriKiwjnV9lChoBkdAlGqvyXlbNmgHTegDaAhHQKyACOby6MB1fZQoaAZHQJdiU/6frbBoB03oA2gIR0Csg9xeC04SdX2UKGgGR0CWVFbc45tFaAdN6ANoCEdArIQttALRbHV9lChoBkdAlVwGzF+/g2gHTegDaAhHQKyGCGcnVoZ1fZQoaAZHQJTuOyGBWghoB03oA2gIR0CsjJ6zE74jdX2UKGgGR0CTo18/D+BIaAdN6ANoCEdArJBtA7gbZXV9lChoBkdAltfAjQiRn2gHTegDaAhHQKyQvdQfp2V1fZQoaAZHQJVrzs5XEIhoB03oA2gIR0CskpMN+b3HdX2UKGgGR0CWaK1eSjgyaAdN6ANoCEdArJkNBY3eenVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de2514bc4f8b504b3ee50ad4a53eeff1c6d0c8dd52087df210081d6279abd5b8
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1188ecd6f4a285df05d82784f431ecf2cb557ea56f84772da8d58070c2f2530
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a89b16310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a89b163a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a89b16430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a89b164c0>", "_build": "<function ActorCriticPolicy._build at 0x7f1a89b16550>", "forward": "<function ActorCriticPolicy.forward at 0x7f1a89b165e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a89b16670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a89b16700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1a89b16790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a89b16820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a89b168b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a89b16940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1a89b0ec00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674139370044933471, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHLDQD+dGYe/Z0IWv/v5kz+FnRvAiHa9Py8ao72yXl2/Lt1uPuUMLEB945M/ALuOvzst8D7GaJQ/m5XRPt6FXDyROJs/IwvwvCjIN78klVe/JnGJP9ztcLyKPRE/V1oDwLc09T5LEK8+fKAWP+Nkg7/J7iM/e0wxvrFODj/9K1M9gOkQv+5iez8B0oy+DBE+v0gp474oyms/cOiQP2vW0T0x56K/ROb1PSU+0T5QlwA9LcFZP/Noxr7RjD2/5tedvgmxVz95IHO/QFRIP/j9/L63NPU+SxCvPnygFj/jZIO/rFVxP7fHsL1WJhs/HYc8vvAskz63gC0/9kyHPC4OQj+qQgi/TNWqPujGCz43ncA+DGfXvsmGtLy2VGO/O6OEvyNomT95GCO+F7YBwOB1YTxbPGc/Cfgtvyp83z4FlcG+tzT1PksQrz58oBY/HGN5PzFsnz8JIAk+Iso2PzzGuz+D/FU/kdKWPEBOYr4p07E+k8M+v2cnIr/O/w4/DyQ0v+4VM7+RrfW+XI8Lv29mQcCseL+/goFsP2bbxr8ILOs+gncLP8VGLcARqxC/8PZsv7c09T5LEK8+fKAWP+Nkg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD8BqU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJUgivQAAAADjYvW/AAAAANhClD0AAAAAnoz9PwAAAABbVkM9AAAAALlO5T8AAAAAB09TvQAAAABTndu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1PhstgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFk0sbsAAAAAESkBwAAAAAACn9q9AAAAAKEi9T8AAAAAbfOFvQAAAAA5TPc/AAAAAL7wRbwAAAAAgP3bvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKFZLrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDYtLa9AAAAAPv1/78AAAAADYBJvAAAAADLye4/AAAAAP1Yx70AAAAAGCIAQAAAAADxgeQ7AAAAALKP7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNyyG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6oPnPQAAAAAHj+K/AAAAALkkDD0AAAAAbXr2PwAAAADPRJu9AAAAAGK09D8AAAAApWNKvQAAAADycN2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJOfx/qgRK+MAWyUTegDjAF0lEdAq2S68an753V9lChoBkdAl3EY8EFGG2gHTegDaAhHQKtlDC0F8oh1fZQoaAZHQJf4dG9YfXBoB03oA2gIR0CrZuXM6ij+dX2UKGgGR0CYs1+w1R+CaAdN6ANoCEdAq20rw+dK/XV9lChoBkdAl7NFnRLK3mgHTegDaAhHQKtw19w3o9t1fZQoaAZHQJh7oC4jKPpoB03oA2gIR0CrcSiPQv6CdX2UKGgGR0CYOea6z3RHaAdN6ANoCEdAq3Lov114gXV9lChoBkdAlrZrHyVfNWgHTegDaAhHQKt5WDIRywR1fZQoaAZHQJZEU0CRwIdoB03oA2gIR0CrfQeLNwBHdX2UKGgGR0CXdNTvy9VWaAdN6ANoCEdAq31caAFxGXV9lChoBkdAlpw/jS5RTGgHTegDaAhHQKt/Jk/bCaZ1fZQoaAZHQJZgRhVlwtJoB03oA2gIR0CrhWCcf/3ndX2UKGgGR0CWl8bmlqJuaAdN6ANoCEdAq4kPms/6f3V9lChoBkdAln26SDAaemgHTegDaAhHQKuJZGaQV9F1fZQoaAZHQJaGWHWSU1RoB03oA2gIR0Criy5nctXgdX2UKGgGR0CYPHzd1uBMaAdN6ANoCEdAq5GSfUWl/HV9lChoBkdAl/HK2a2F4GgHTegDaAhHQKuVUo1k1/F1fZQoaAZHQJe5yn+AEuBoB03oA2gIR0CrlaJ2MbWFdX2UKGgGR0CZaWW1MM7VaAdN6ANoCEdAq5d1QoCuEHV9lChoBkdAmMye3x4IKWgHTegDaAhHQKudz9ZzPrx1fZQoaAZHQJkQJugpSaVoB03oA2gIR0Crog/f4yoGdX2UKGgGR0CUgbfKp1ifaAdN6ANoCEdAq6KKXUpd8nV9lChoBkdAmPK/WpZOi2gHTegDaAhHQKulIgvlEJB1fZQoaAZHQJYv6/wiJO5oB03oA2gIR0CrrSMZgogFdX2UKGgGR0CWa+EyckMTaAdN6ANoCEdAq7Dd58jRlnV9lChoBkdAlhuq2nbZe2gHTegDaAhHQKuxQXJHRTl1fZQoaAZHQJIrBotcv/RoB03oA2gIR0CrswUYCQtBdX2UKGgGR0CWZzgwXZXdaAdN6ANoCEdAq7lKc0+C9XV9lChoBkdAk9F9F8XvY2gHTegDaAhHQKu8+yLyc1B1fZQoaAZHQJaaWZSeiBZoB03oA2gIR0CrvVHEVFhHdX2UKGgGR0CWNVc/MW43aAdN6ANoCEdAq78idH2AXnV9lChoBkdAl/TTSXt0FWgHTegDaAhHQKvFbPmgam51fZQoaAZHQJfu9UxVQyhoB03oA2gIR0CryRpAMUh3dX2UKGgGR0CWzL1c+qzaaAdN6ANoCEdAq8lvJtBOYnV9lChoBkdAl9W5mukk8mgHTegDaAhHQKvLPR9gF5h1fZQoaAZHQJhDqflIVdpoB03oA2gIR0Cr0YgBLf1pdX2UKGgGR0CVHN+Eh7mdaAdN6ANoCEdAq9UxsGgSOHV9lChoBkdAl6gJ5AyEc2gHTegDaAhHQKvVhNZeRgZ1fZQoaAZHQJegj4AS39doB03oA2gIR0Cr10sRxtHhdX2UKGgGR0CRGd1OCXhPaAdN6ANoCEdAq92+zWwu/XV9lChoBkdAk4HoKpkwvmgHTegDaAhHQKvhhesPrfN1fZQoaAZHQJmLhfKISDhoB03oA2gIR0Cr4dgNoakzdX2UKGgGR0CRycpNbkfcaAdN6ANoCEdAq+OiTnq3VnV9lChoBkdAk6jHnZCfH2gHTegDaAhHQKvp9WUbDMx1fZQoaAZHQJnQoRcu8K5oB03oA2gIR0Cr7ZrLyMDPdX2UKGgGR0CYR67laKUFaAdN6ANoCEdAq+38Rg7YCnV9lChoBkdAl8HLYbsF+2gHTegDaAhHQKvv1qlgtvp1fZQoaAZHQJgZ5TfixV1oB03oA2gIR0Cr9h4+B6KMdX2UKGgGR0CV7HophF3IaAdN6ANoCEdAq/nFwT/Q0HV9lChoBkdAl1Sb961LJ2gHTegDaAhHQKv6GVUMoc91fZQoaAZHQJhyk75mAb1oB03oA2gIR0Cr++IzN2TxdX2UKGgGR0CYhV8BuGbkaAdN6ANoCEdArAIQqmTC+HV9lChoBkdAmF5HeFcps2gHTegDaAhHQKwFuebutwJ1fZQoaAZHQJeMyG21D0FoB03oA2gIR0CsBg0VSGahdX2UKGgGR0CY73IRh+fAaAdN6ANoCEdArAff9JjDsXV9lChoBkdAk1htQCSzPmgHTegDaAhHQKwOLIsiB5J1fZQoaAZHQJeLl3kgfU5oB03oA2gIR0CsEe5zgdfcdX2UKGgGR0CXWrgdfb9IaAdN6ANoCEdArBJDOZ9d/3V9lChoBkdAlhD+WOZLI2gHTegDaAhHQKwUCQGwA2h1fZQoaAZHQJV0QF0PpY9oB03oA2gIR0CsGm+WWyC4dX2UKGgGR0CUd2Wt2cJ/aAdN6ANoCEdArB5BzDGcWnV9lChoBkdAk9QEwJw84mgHTegDaAhHQKwelZg5R0l1fZQoaAZHQJUZH0L+glFoB03oA2gIR0CsIGgRTS9edX2UKGgGR0CU6VhsZYPoaAdN6ANoCEdArCa+lEZzgnV9lChoBkdAmNY+nuRcNmgHTegDaAhHQKwqoKLsKLN1fZQoaAZHQJjIQE6kqMFoB03oA2gIR0CsKvUFr2xqdX2UKGgGR0CX8NaG5+YuaAdN6ANoCEdArCzO+M6zV3V9lChoBkdAjgzVtGd7OWgHTegDaAhHQKw1PbmEGqx1fZQoaAZHQJEpNIlMRHxoB03oA2gIR0CsOf+aKDTSdX2UKGgGR0CYvE0WuX/paAdN6ANoCEdArDpQBmwqzHV9lChoBkdAkSvh15jYqWgHTegDaAhHQKw8G4vvjOt1fZQoaAZHQJiR9uZThpBoB03oA2gIR0CsQn76pHZsdX2UKGgGR0CY8AMfA9FGaAdN6ANoCEdArEZPkWAPNHV9lChoBkdAmYC6Jyhi9mgHTegDaAhHQKxGob0e2eB1fZQoaAZHQJeKaVqveP9oB03oA2gIR0CsSGNvOyE+dX2UKGgGR0CX6sAZbY9QaAdN6ANoCEdArE6Z6dDpknV9lChoBkdAlmwWeYlY2mgHTegDaAhHQKxSUDgZTAF1fZQoaAZHQJXBWml67d1oB03oA2gIR0CsUqGlANXpdX2UKGgGR0CXhkR7JGONaAdN6ANoCEdArFR0cGTs6nV9lChoBkdAlx1VnqVyFWgHTegDaAhHQKxa5DQZ4wB1fZQoaAZHQJU9OXlbNbFoB03oA2gIR0CsXrZV4oqkdX2UKGgGR0CUr+VeruIAaAdN6ANoCEdArF8LdP+GXXV9lChoBkdAlM4awIMSb2gHTegDaAhHQKxg3SDRMOB1fZQoaAZHQJSavSThYNloB03oA2gIR0CsZ2HGKhtcdX2UKGgGR0CUQ3E+xGDuaAdN6ANoCEdArGsyy8jAz3V9lChoBkdAlZqWexwAEWgHTegDaAhHQKxri79ycTd1fZQoaAZHQJRs3CP6sQxoB03oA2gIR0CsbWqcmShbdX2UKGgGR0CUL/6dDpkgaAdN6ANoCEdArHPQeRxLkHV9lChoBkdAl4NnTd+G5GgHTegDaAhHQKx3i40dilV1fZQoaAZHQJTSO9lEqlRoB03oA2gIR0Csd+EYfnwHdX2UKGgGR0CWx4rsByS3aAdN6ANoCEdArHmriKiwjnV9lChoBkdAlGqvyXlbNmgHTegDaAhHQKyACOby6MB1fZQoaAZHQJdiU/6frbBoB03oA2gIR0Csg9xeC04SdX2UKGgGR0CWVFbc45tFaAdN6ANoCEdArIQttALRbHV9lChoBkdAlVwGzF+/g2gHTegDaAhHQKyGCGcnVoZ1fZQoaAZHQJTuOyGBWghoB03oA2gIR0CsjJ6zE74jdX2UKGgGR0CTo18/D+BIaAdN6ANoCEdArJBtA7gbZXV9lChoBkdAltfAjQiRn2gHTegDaAhHQKyQvdQfp2V1fZQoaAZHQJVrzs5XEIhoB03oA2gIR0CskpMN+b3HdX2UKGgGR0CWaK1eSjgyaAdN6ANoCEdArJkNBY3eenVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cc4cdd7c3c6f5007495df75547d7ac3d0df5adbc24e3ef5e5ed4655fa7213ca
3
+ size 1119941
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1489.8407445305115, "std_reward": 108.9379348286271, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T15:41:24.676787"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a846ce7ba268bdd3fb158eff0661d2abbde2983be5f8b5119ff66b7df5390c4c
3
+ size 2521