--- license: other license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms model-index: - name: google-gemma-7b-it-dpo-v1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 51.54 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/google-gemma-7b-it-dpo-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 71.58 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/google-gemma-7b-it-dpo-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 53.24 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/google-gemma-7b-it-dpo-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 46.85 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/google-gemma-7b-it-dpo-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 67.25 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/google-gemma-7b-it-dpo-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 27.67 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/google-gemma-7b-it-dpo-v1 name: Open LLM Leaderboard --- this is a DPO fine-tuned model for google/gemma-7b-it using jondurbin/truthy-dpo-v0.1 ``` DPO Trainer TRL supports the DPO Trainer for training language models from preference data, as described in the paper Direct Preference Optimization: Your Language Model is Secretly a Reward Model by Rafailov et al., 2023. ``` ``` target_modules=[ "gate_proj", "up_proj", "down_proj"] ``` sample code ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/google-gemma-7b-it-dpo-v1" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_cloudyu__google-gemma-7b-it-dpo-v1) | Metric |Value| |---------------------------------|----:| |Avg. |53.02| |AI2 Reasoning Challenge (25-Shot)|51.54| |HellaSwag (10-Shot) |71.58| |MMLU (5-Shot) |53.24| |TruthfulQA (0-shot) |46.85| |Winogrande (5-shot) |67.25| |GSM8k (5-shot) |27.67|