Delete dpo.py
Browse files
dpo.py
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from urllib.parse import unquote_plus
|
4 |
-
import os
|
5 |
-
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed, Trainer, TrainingArguments, BitsAndBytesConfig, \
|
7 |
-
DataCollatorForLanguageModeling, Trainer, TrainingArguments
|
8 |
-
from transformers import BitsAndBytesConfig
|
9 |
-
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
10 |
-
|
11 |
-
nf4_config = BitsAndBytesConfig(
|
12 |
-
load_in_4bit=True,
|
13 |
-
bnb_4bit_quant_type="nf4",
|
14 |
-
bnb_4bit_use_double_quant=True,
|
15 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
16 |
-
)
|
17 |
-
|
18 |
-
# Carregar o modelo e o tokenizador na GPU
|
19 |
-
device = "cuda:0"
|
20 |
-
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
21 |
-
model = AutoModelForCausalLM.from_pretrained(model_id,quantization_config=nf4_config,device_map="auto",local_files_only=False,trust_remote_code=True)
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, use_default_system_prompt=False)
|
23 |
-
if tokenizer.pad_token is None:
|
24 |
-
tokenizer.pad_token = tokenizer.eos_token
|
25 |
-
print(model)
|
26 |
-
from transformers import AutoModelForCausalLM
|
27 |
-
from datasets import load_dataset
|
28 |
-
from trl import *
|
29 |
-
|
30 |
-
# jondurbin/truthy-dpo-v0.1
|
31 |
-
|
32 |
-
def return_prompt_and_responses(samples) :
|
33 |
-
return {
|
34 |
-
"prompt": [
|
35 |
-
"Question: " + question + "\n\nAnswer: "
|
36 |
-
for question in samples["prompt"]
|
37 |
-
],
|
38 |
-
"chosen": samples["chosen"], # rated better than k
|
39 |
-
"rejected": samples["rejected"], # rated worse than j
|
40 |
-
}
|
41 |
-
|
42 |
-
dataset = load_dataset(
|
43 |
-
"jondurbin/truthy-dpo-v0.1",
|
44 |
-
split="train",
|
45 |
-
#data_dir="data/rl"
|
46 |
-
)
|
47 |
-
original_columns = dataset.column_names
|
48 |
-
|
49 |
-
dataset.map(
|
50 |
-
return_prompt_and_responses,
|
51 |
-
batched=True,
|
52 |
-
remove_columns=original_columns
|
53 |
-
)
|
54 |
-
|
55 |
-
|
56 |
-
model = prepare_model_for_kbit_training(model)
|
57 |
-
|
58 |
-
peft_config = LoraConfig(
|
59 |
-
r=128,
|
60 |
-
lora_alpha=16,
|
61 |
-
target_modules=["q_proj","k_proj","v_proj","o_proj", "up_proj","gate_proj","down_proj", "lm_head"],
|
62 |
-
lora_dropout=0.05,
|
63 |
-
bias="none",
|
64 |
-
task_type="CAUSAL_LM",
|
65 |
-
)
|
66 |
-
output_dir = "./odp"
|
67 |
-
training_args = TrainingArguments(
|
68 |
-
per_device_train_batch_size=1,
|
69 |
-
gradient_accumulation_steps=1,
|
70 |
-
gradient_checkpointing =True,
|
71 |
-
max_grad_norm= 0.3,
|
72 |
-
optim='adafactor',
|
73 |
-
overwrite_output_dir=True,save_steps=100,
|
74 |
-
num_train_epochs=1,
|
75 |
-
learning_rate=2e-4,
|
76 |
-
bf16=True,
|
77 |
-
save_total_limit=3,
|
78 |
-
logging_steps=10,
|
79 |
-
output_dir=output_dir,
|
80 |
-
lr_scheduler_type="cosine",
|
81 |
-
warmup_ratio=0.05,
|
82 |
-
)
|
83 |
-
|
84 |
-
dpo_trainer = DPOTrainer(
|
85 |
-
model,
|
86 |
-
#model_ref,
|
87 |
-
args=training_args,
|
88 |
-
peft_config=peft_config,
|
89 |
-
beta=0.1,
|
90 |
-
train_dataset=dataset,
|
91 |
-
tokenizer=tokenizer,
|
92 |
-
max_prompt_length=1024,
|
93 |
-
max_length=2048,
|
94 |
-
)
|
95 |
-
|
96 |
-
dpo_trainer.train()
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|