File size: 10,708 Bytes
af928d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---

library_name: transformers
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr_finetuned_30
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr_finetuned_30

This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1249
- Map: 0.2684
- Map 50: 0.5212
- Map 75: 0.2578
- Map Small: 0.22
- Map Medium: 0.377
- Map Large: 0.395
- Mar 1: 0.1497
- Mar 10: 0.3903
- Mar 100: 0.4383
- Mar Small: 0.398
- Mar Medium: 0.5486
- Mar Large: 0.6314
- Map Basketball: 0.0431
- Mar 100 Basketball: 0.147
- Map Player: 0.3203
- Mar 100 Player: 0.5743
- Map Referee: 0.4419
- Mar 100 Referee: 0.5936

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 16

- eval_batch_size: 8

- seed: 42

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: cosine

- num_epochs: 30

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Basketball | Mar 100 Basketball | Map Player | Mar 100 Player | Map Referee | Mar 100 Referee |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:--------------:|:------------------:|:----------:|:--------------:|:-----------:|:---------------:|
| No log        | 1.0   | 461   | 1.7649          | 0.0495 | 0.1443 | 0.0205 | 0.0386    | 0.0955     | 0.1299    | 0.0262 | 0.1028 | 0.1539  | 0.1341    | 0.2707     | 0.5936    | 0.0048         | 0.0142             | 0.1345     | 0.3828         | 0.0093      | 0.0646          |
| 1.9775        | 2.0   | 922   | 1.5434          | 0.1063 | 0.2515 | 0.0673 | 0.0772    | 0.1801     | 0.4147    | 0.0497 | 0.2231 | 0.2853  | 0.2337    | 0.3809     | 0.6431    | 0.0004         | 0.0211             | 0.2031     | 0.4458         | 0.1154      | 0.389           |
| 1.7156        | 3.0   | 1383  | 1.4497          | 0.139  | 0.3385 | 0.0796 | 0.1042    | 0.3513     | 0.4331    | 0.0722 | 0.2634 | 0.3277  | 0.2719    | 0.519      | 0.6221    | 0.0019         | 0.042              | 0.21       | 0.4515         | 0.2049      | 0.4895          |
| 1.5817        | 4.0   | 1844  | 1.3623          | 0.191  | 0.4015 | 0.1554 | 0.1364    | 0.2989     | 0.4691    | 0.1062 | 0.2979 | 0.3572  | 0.3144    | 0.4426     | 0.6789    | 0.002          | 0.0515             | 0.2474     | 0.4896         | 0.3236      | 0.5305          |
| 1.4789        | 5.0   | 2305  | 1.3544          | 0.1874 | 0.4189 | 0.1338 | 0.1415    | 0.357      | 0.4253    | 0.1031 | 0.2946 | 0.36    | 0.3174    | 0.5002     | 0.6838    | 0.0032         | 0.0591             | 0.2486     | 0.4917         | 0.3104      | 0.5292          |
| 1.4235        | 6.0   | 2766  | 1.2867          | 0.211  | 0.4444 | 0.1715 | 0.154     | 0.3671     | 0.298     | 0.118  | 0.3084 | 0.3629  | 0.3113    | 0.5314     | 0.6814    | 0.0032         | 0.0494             | 0.2607     | 0.4919         | 0.3692      | 0.5474          |
| 1.3454        | 7.0   | 3227  | 1.3163          | 0.2024 | 0.4324 | 0.1654 | 0.1381    | 0.362      | 0.4507    | 0.114  | 0.3076 | 0.3557  | 0.3114    | 0.4828     | 0.651     | 0.0052         | 0.0581             | 0.2397     | 0.4762         | 0.3623      | 0.5329          |
| 1.3253        | 8.0   | 3688  | 1.2467          | 0.2169 | 0.4386 | 0.1888 | 0.1576    | 0.3525     | 0.4086    | 0.1128 | 0.327  | 0.3884  | 0.344     | 0.5275     | 0.6926    | 0.0105         | 0.0693             | 0.2758     | 0.525          | 0.3643      | 0.5708          |
| 1.276         | 9.0   | 4149  | 1.2343          | 0.2242 | 0.4614 | 0.1877 | 0.1659    | 0.3289     | 0.3643    | 0.1273 | 0.3341 | 0.3883  | 0.3438    | 0.4961     | 0.6814    | 0.0094         | 0.0896             | 0.2701     | 0.5176         | 0.3932      | 0.5579          |
| 1.2626        | 10.0  | 4610  | 1.2377          | 0.2324 | 0.4659 | 0.2072 | 0.1803    | 0.3146     | 0.3717    | 0.1261 | 0.3469 | 0.3967  | 0.3548    | 0.4797     | 0.624     | 0.0101         | 0.0849             | 0.2777     | 0.5198         | 0.4094      | 0.5855          |
| 1.2274        | 11.0  | 5071  | 1.2398          | 0.2358 | 0.4759 | 0.2075 | 0.1795    | 0.3235     | 0.4632    | 0.1338 | 0.3479 | 0.3952  | 0.3457    | 0.4835     | 0.6647    | 0.0128         | 0.0864             | 0.2831     | 0.5323         | 0.4114      | 0.5669          |
| 1.2026        | 12.0  | 5532  | 1.1964          | 0.2407 | 0.4828 | 0.2133 | 0.1808    | 0.3974     | 0.4632    | 0.1329 | 0.3571 | 0.4064  | 0.3481    | 0.5671     | 0.6966    | 0.0151         | 0.0897             | 0.2866     | 0.5305         | 0.4203      | 0.5991          |
| 1.2026        | 13.0  | 5993  | 1.2058          | 0.2367 | 0.4879 | 0.201  | 0.1919    | 0.3161     | 0.4254    | 0.1314 | 0.3515 | 0.398   | 0.3516    | 0.4787     | 0.6789    | 0.019          | 0.0999             | 0.287      | 0.531          | 0.404       | 0.5632          |
| 1.1779        | 14.0  | 6454  | 1.1949          | 0.2365 | 0.4716 | 0.2179 | 0.1759    | 0.3254     | 0.4736    | 0.1268 | 0.359  | 0.4064  | 0.3592    | 0.5701     | 0.6495    | 0.0203         | 0.1028             | 0.2945     | 0.542          | 0.3946      | 0.5743          |
| 1.1578        | 15.0  | 6915  | 1.2130          | 0.2291 | 0.468  | 0.2024 | 0.1673    | 0.3503     | 0.4148    | 0.1238 | 0.3551 | 0.4049  | 0.3668    | 0.485      | 0.6059    | 0.02           | 0.1102             | 0.2821     | 0.5349         | 0.3851      | 0.5697          |
| 1.131         | 16.0  | 7376  | 1.2012          | 0.2384 | 0.478  | 0.2139 | 0.1848    | 0.2908     | 0.4595    | 0.1314 | 0.3597 | 0.4048  | 0.3616    | 0.5554     | 0.6382    | 0.0174         | 0.1082             | 0.291      | 0.5388         | 0.4068      | 0.5672          |
| 1.1208        | 17.0  | 7837  | 1.1768          | 0.2517 | 0.4928 | 0.2365 | 0.2057    | 0.3507     | 0.4399    | 0.1352 | 0.3697 | 0.4208  | 0.38      | 0.5615     | 0.6201    | 0.0222         | 0.1082             | 0.3005     | 0.5574         | 0.4324      | 0.5969          |
| 1.0992        | 18.0  | 8298  | 1.1605          | 0.2403 | 0.4776 | 0.2194 | 0.1967    | 0.2987     | 0.4002    | 0.1315 | 0.3655 | 0.4148  | 0.3761    | 0.5148     | 0.5838    | 0.0216         | 0.1004             | 0.2958     | 0.5538         | 0.4034      | 0.5901          |
| 1.0793        | 19.0  | 8759  | 1.1529          | 0.2496 | 0.4954 | 0.2307 | 0.2071    | 0.3352     | 0.4166    | 0.133  | 0.3752 | 0.4255  | 0.3868    | 0.5096     | 0.6431    | 0.0278         | 0.1219             | 0.3072     | 0.567          | 0.4139      | 0.5877          |
| 1.0648        | 20.0  | 9220  | 1.1573          | 0.2539 | 0.505  | 0.2326 | 0.2033    | 0.3472     | 0.4315    | 0.1389 | 0.3818 | 0.4308  | 0.3896    | 0.5701     | 0.6275    | 0.0327         | 0.1387             | 0.3021     | 0.5606         | 0.427       | 0.5931          |
| 1.05          | 21.0  | 9681  | 1.1417          | 0.257  | 0.505  | 0.2463 | 0.2135    | 0.3753     | 0.4454    | 0.1392 | 0.3862 | 0.4331  | 0.3949    | 0.5359     | 0.6696    | 0.0339         | 0.1388             | 0.3103     | 0.5656         | 0.4267      | 0.5948          |
| 1.0362        | 22.0  | 10142 | 1.1439          | 0.259  | 0.5124 | 0.2466 | 0.2112    | 0.3458     | 0.3431    | 0.1406 | 0.3832 | 0.4307  | 0.3895    | 0.4829     | 0.6402    | 0.0326         | 0.1252             | 0.312      | 0.5706         | 0.4324      | 0.5963          |
| 1.0248        | 23.0  | 10603 | 1.1317          | 0.2641 | 0.5182 | 0.2514 | 0.215     | 0.3594     | 0.3094    | 0.1445 | 0.3838 | 0.4319  | 0.3942    | 0.5376     | 0.6137    | 0.0334         | 0.1296             | 0.3123     | 0.5687         | 0.4467      | 0.5972          |
| 1.0173        | 24.0  | 11064 | 1.1485          | 0.2581 | 0.5057 | 0.247  | 0.2102    | 0.3723     | 0.4356    | 0.1414 | 0.3819 | 0.4295  | 0.3906    | 0.5416     | 0.6681    | 0.0334         | 0.1372             | 0.3158     | 0.5696         | 0.4251      | 0.5817          |
| 1.0082        | 25.0  | 11525 | 1.1344          | 0.2642 | 0.5158 | 0.2495 | 0.2176    | 0.3517     | 0.4473    | 0.1467 | 0.3843 | 0.4322  | 0.3915    | 0.554      | 0.6377    | 0.0354         | 0.1386             | 0.3158     | 0.5685         | 0.4414      | 0.5894          |
| 1.0082        | 26.0  | 11986 | 1.1267          | 0.2648 | 0.5175 | 0.2514 | 0.2147    | 0.3598     | 0.4399    | 0.1489 | 0.3868 | 0.4341  | 0.3942    | 0.5624     | 0.6294    | 0.0381         | 0.1422             | 0.3181     | 0.5706         | 0.4381      | 0.5894          |
| 1.0006        | 27.0  | 12447 | 1.1296          | 0.2687 | 0.5208 | 0.2581 | 0.2198    | 0.3694     | 0.4415    | 0.1506 | 0.3887 | 0.4359  | 0.3967    | 0.5455     | 0.6333    | 0.0439         | 0.1464             | 0.3188     | 0.5727         | 0.4434      | 0.5885          |
| 0.9989        | 28.0  | 12908 | 1.1237          | 0.2675 | 0.5191 | 0.2562 | 0.2202    | 0.3769     | 0.3991    | 0.1484 | 0.3897 | 0.4374  | 0.397     | 0.5484     | 0.6333    | 0.0411         | 0.1454             | 0.3204     | 0.5735         | 0.441       | 0.5932          |
| 0.9952        | 29.0  | 13369 | 1.1251          | 0.2687 | 0.5204 | 0.2582 | 0.221     | 0.3689     | 0.3963    | 0.15   | 0.3904 | 0.4385  | 0.3984    | 0.5485     | 0.6314    | 0.0426         | 0.1474             | 0.3207     | 0.5744         | 0.4427      | 0.5936          |
| 0.9909        | 30.0  | 13830 | 1.1249          | 0.2684 | 0.5212 | 0.2578 | 0.22      | 0.377      | 0.395     | 0.1497 | 0.3903 | 0.4383  | 0.398     | 0.5486     | 0.6314    | 0.0431         | 0.147              | 0.3203     | 0.5743         | 0.4419      | 0.5936          |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3