Update README.md
Browse files
README.md
CHANGED
|
@@ -14,7 +14,7 @@ base_model:
|
|
| 14 |
# Wav2Vec2Bert Audio frame classifier for prosodic unit detection
|
| 15 |
|
| 16 |
This model predicts prosodic units on speech.
|
| 17 |
-
For each 20ms frame the model predicts
|
| 18 |
this frame or not.
|
| 19 |
|
| 20 |
|
|
@@ -40,12 +40,237 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
| 40 |
|
| 41 |
## Uses
|
| 42 |
|
|
|
|
| 43 |
|
|
|
|
|
|
|
|
|
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
## Bias, Risks, and Limitations
|
| 46 |
|
| 47 |
## Training Details
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
## Evaluation
|
| 50 |
|
| 51 |
|
|
|
|
| 14 |
# Wav2Vec2Bert Audio frame classifier for prosodic unit detection
|
| 15 |
|
| 16 |
This model predicts prosodic units on speech.
|
| 17 |
+
For each 20ms frame the model predicts 1 or 0, indicating whether there is a prosodic unit in
|
| 18 |
this frame or not.
|
| 19 |
|
| 20 |
|
|
|
|
| 40 |
|
| 41 |
## Uses
|
| 42 |
|
| 43 |
+
### Simple use (short files)
|
| 44 |
|
| 45 |
+
For shorter audios that fit on your GPU the classifier can be used directly.
|
| 46 |
+
```python
|
| 47 |
+
import numpy as np
|
| 48 |
|
| 49 |
+
from datasets import Audio, Dataset
|
| 50 |
+
from transformers import AutoFeatureExtractor, Wav2Vec2BertForAudioFrameClassification
|
| 51 |
+
import torch
|
| 52 |
+
import numpy as np
|
| 53 |
+
|
| 54 |
+
if torch.cuda.is_available():
|
| 55 |
+
device = torch.device("cuda")
|
| 56 |
+
else:
|
| 57 |
+
device = torch.device("cpu")
|
| 58 |
+
|
| 59 |
+
model_name = "5roop/Wav2Vec2BertProsodicUnitsFrameClassifier"
|
| 60 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 61 |
+
model = Wav2Vec2BertForAudioFrameClassification.from_pretrained(model_name).to(device)
|
| 62 |
+
f = "data/Rog-Art-N-G6007-P600702_181.070_211.070.wav"
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def frames_to_intervals(frames: list) -> list[tuple]:
|
| 66 |
+
from itertools import pairwise
|
| 67 |
+
import pandas as pd
|
| 68 |
+
|
| 69 |
+
results = []
|
| 70 |
+
ndf = pd.DataFrame(
|
| 71 |
+
data={
|
| 72 |
+
"time_s": [0.020 * i for i in range(len(frames))],
|
| 73 |
+
"frames": frames,
|
| 74 |
+
}
|
| 75 |
+
)
|
| 76 |
+
ndf = ndf.dropna()
|
| 77 |
+
indices_of_change = ndf.frames.diff()[ndf.frames.diff() != 0].index.values
|
| 78 |
+
for si, ei in pairwise(indices_of_change):
|
| 79 |
+
if ndf.loc[si : ei - 1, "frames"].mode()[0] == 0:
|
| 80 |
+
pass
|
| 81 |
+
else:
|
| 82 |
+
results.append(
|
| 83 |
+
(round(ndf.loc[si, "time_s"], 3), round(ndf.loc[ei - 1, "time_s"], 3))
|
| 84 |
+
)
|
| 85 |
+
return results
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def evaluator(chunks):
|
| 89 |
+
sampling_rate = chunks["audio"][0]["sampling_rate"]
|
| 90 |
+
with torch.no_grad():
|
| 91 |
+
inputs = feature_extractor(
|
| 92 |
+
[i["array"] for i in chunks["audio"]],
|
| 93 |
+
return_tensors="pt",
|
| 94 |
+
sampling_rate=sampling_rate,
|
| 95 |
+
).to(device)
|
| 96 |
+
logits = model(**inputs).logits
|
| 97 |
+
y_pred_raw = np.array(logits.cpu())
|
| 98 |
+
y_pred = y_pred_raw.argmax(axis=-1)
|
| 99 |
+
prosodic_units = [frames_to_intervals(i) for i in y_pred]
|
| 100 |
+
return {
|
| 101 |
+
"y_pred": y_pred,
|
| 102 |
+
"y_pred_logits": y_pred_raw,
|
| 103 |
+
"prosodic_units": prosodic_units,
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
ds = Dataset.from_dict({"audio": [f, f]}).cast_column("audio", Audio(16000, mono=True))
|
| 108 |
+
ds = ds.map(evaluator, batched=True, batch_size=2)
|
| 109 |
+
print(ds["y_pred"][0])
|
| 110 |
+
# Outputs: [0, 0, 1, 1, 1, 1, 1, ...]
|
| 111 |
+
print(ds["y_pred_logits"][0])
|
| 112 |
+
# Outputs:
|
| 113 |
+
# [[ 0.89419061, -0.77746612],
|
| 114 |
+
# [ 0.44213724, -0.34862748],
|
| 115 |
+
# [-0.08605709, 0.13012762],
|
| 116 |
+
# ....
|
| 117 |
+
print(ds["prosodic_units"][0])
|
| 118 |
+
# Outputs: [[0.04, 2.4], [3.52, 6.6], ....
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
### Inference on longer files
|
| 123 |
+
If the file is too big for straight-forward inference, some chunking needs to be performed in order to process it.
|
| 124 |
+
We know that for starts and ends of chunks the probability of false negatives increases, so it is best to process the file
|
| 125 |
+
with some overlap between chunks or split it on silence. We illustrate the former approach here:
|
| 126 |
+
```python
|
| 127 |
+
import numpy as np
|
| 128 |
+
|
| 129 |
+
from datasets import Audio, Dataset
|
| 130 |
+
from transformers import AutoFeatureExtractor, Wav2Vec2BertForAudioFrameClassification
|
| 131 |
+
import torch
|
| 132 |
+
import numpy as np
|
| 133 |
+
|
| 134 |
+
if torch.cuda.is_available():
|
| 135 |
+
device = torch.device("cuda")
|
| 136 |
+
else:
|
| 137 |
+
device = torch.device("cpu")
|
| 138 |
+
|
| 139 |
+
model_name = "5roop/Wav2Vec2BertProsodicUnitsFrameClassifier"
|
| 140 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 141 |
+
model = Wav2Vec2BertForAudioFrameClassification.from_pretrained(model_name).to(device)
|
| 142 |
+
f = "ROG/ROG-Art/WAV/Rog-Art-N-G5025-P600022.wav"
|
| 143 |
+
|
| 144 |
+
OVERLAP_S = 10
|
| 145 |
+
CHUNK_LENGTH_S = 30
|
| 146 |
+
SAMPLING_RATE = 16_000
|
| 147 |
+
OVERLAP_SAMPLES = OVERLAP_S * SAMPLING_RATE
|
| 148 |
+
CHUNK_LENGTH_SAMPLES = CHUNK_LENGTH_S * SAMPLING_RATE
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def frames_to_intervals(frames: list) -> list[tuple]:
|
| 152 |
+
from itertools import pairwise
|
| 153 |
+
import pandas as pd
|
| 154 |
+
|
| 155 |
+
results = []
|
| 156 |
+
ndf = pd.DataFrame(
|
| 157 |
+
data={
|
| 158 |
+
"time_s": [0.020 * i for i in range(len(frames))],
|
| 159 |
+
"frames": frames,
|
| 160 |
+
}
|
| 161 |
+
)
|
| 162 |
+
ndf = ndf.dropna()
|
| 163 |
+
indices_of_change = ndf.frames.diff()[ndf.frames.diff() != 0].index.values
|
| 164 |
+
for si, ei in pairwise(indices_of_change):
|
| 165 |
+
if ndf.loc[si : ei - 1, "frames"].mode()[0] == 0:
|
| 166 |
+
pass
|
| 167 |
+
else:
|
| 168 |
+
results.append(
|
| 169 |
+
(round(ndf.loc[si, "time_s"], 3), round(ndf.loc[ei - 1, "time_s"], 3))
|
| 170 |
+
)
|
| 171 |
+
return results
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def merge_events(events: list[list[float]], centroids):
|
| 175 |
+
flattened_events = []
|
| 176 |
+
flattened_centroids = []
|
| 177 |
+
for batch_idx, batch in enumerate(events):
|
| 178 |
+
for event in batch:
|
| 179 |
+
flattened_events.append(event)
|
| 180 |
+
flattened_centroids.append(centroids[batch_idx])
|
| 181 |
+
flattened_events.sort(key=lambda x: x[0])
|
| 182 |
+
|
| 183 |
+
# Merged list to store final intervals
|
| 184 |
+
merged = []
|
| 185 |
+
|
| 186 |
+
for event, centroid in zip(flattened_events, centroids):
|
| 187 |
+
if not merged:
|
| 188 |
+
# If merged is empty, simply add the first event
|
| 189 |
+
merged.append((event, centroid))
|
| 190 |
+
else:
|
| 191 |
+
last_event, last_centroid = merged[-1]
|
| 192 |
+
# Check for overlap
|
| 193 |
+
if (last_event[0] < event[1]) and (last_event[1] > event[0]):
|
| 194 |
+
# Calculate the midpoint of the intervals
|
| 195 |
+
last_event_midpoint = (last_event[0] + last_event[1]) / 2
|
| 196 |
+
current_event_midpoint = (event[0] + event[1]) / 2
|
| 197 |
+
|
| 198 |
+
# Choose the event whose centroid is closer to its midpoint
|
| 199 |
+
if abs(last_centroid - last_event_midpoint) <= abs(
|
| 200 |
+
centroid - current_event_midpoint
|
| 201 |
+
):
|
| 202 |
+
continue
|
| 203 |
+
else:
|
| 204 |
+
merged[-1] = (event, centroid)
|
| 205 |
+
else:
|
| 206 |
+
merged.append((event, centroid))
|
| 207 |
+
|
| 208 |
+
final_intervals = [event for event, _ in merged]
|
| 209 |
+
return final_intervals
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def evaluator(chunks):
|
| 213 |
+
with torch.no_grad():
|
| 214 |
+
samples = []
|
| 215 |
+
for array, start, end in zip(chunks["audio"], chunks["start"], chunks["end"]):
|
| 216 |
+
samples.append(array["array"][start:end])
|
| 217 |
+
inputs = feature_extractor(
|
| 218 |
+
samples,
|
| 219 |
+
return_tensors="pt",
|
| 220 |
+
sampling_rate=SAMPLING_RATE,
|
| 221 |
+
).to(device)
|
| 222 |
+
logits = model(**inputs).logits
|
| 223 |
+
y_pred_raw = np.array(logits.cpu())
|
| 224 |
+
y_pred = y_pred_raw.argmax(axis=-1)
|
| 225 |
+
prosodic_units = [
|
| 226 |
+
np.array(frames_to_intervals(i)) + start / SAMPLING_RATE
|
| 227 |
+
for i, start in zip(y_pred, chunks["start"])
|
| 228 |
+
]
|
| 229 |
+
return {
|
| 230 |
+
"y_pred": y_pred,
|
| 231 |
+
"y_pred_logits": y_pred_raw,
|
| 232 |
+
"prosodic_units": prosodic_units,
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
audio_duration_samples = (
|
| 237 |
+
Audio(SAMPLING_RATE, mono=True)
|
| 238 |
+
.decode_example({"path": f, "bytes": None})["array"]
|
| 239 |
+
.shape[0]
|
| 240 |
+
)
|
| 241 |
+
chunk_starts = np.arange(
|
| 242 |
+
0, audio_duration_samples, CHUNK_LENGTH_SAMPLES - OVERLAP_SAMPLES
|
| 243 |
+
)
|
| 244 |
+
chunk_ends = chunk_starts + CHUNK_LENGTH_SAMPLES
|
| 245 |
+
|
| 246 |
+
ds = Dataset.from_dict(
|
| 247 |
+
{
|
| 248 |
+
"audio": [f for i in chunk_starts],
|
| 249 |
+
"start": chunk_starts,
|
| 250 |
+
"end": chunk_ends,
|
| 251 |
+
"chunk_centroid_s": (chunk_starts + chunk_ends) / 2 / SAMPLING_RATE,
|
| 252 |
+
}
|
| 253 |
+
).cast_column("audio", Audio(SAMPLING_RATE, mono=True))
|
| 254 |
+
|
| 255 |
+
ds = ds.map(evaluator, batched=True, batch_size=10)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
final_intervals = merge_events(ds["prosodic_units"], ds["chunk_centroid_s"])
|
| 259 |
+
print(final_intervals)
|
| 260 |
+
# Outputs: [[3.14, 4.96], [5.6, 8.4], [8.62, 9.32], [10.12, 10.7], [11.72, 13.1],....
|
| 261 |
+
```
|
| 262 |
## Bias, Risks, and Limitations
|
| 263 |
|
| 264 |
## Training Details
|
| 265 |
|
| 266 |
+
|hyperparameter|value|
|
| 267 |
+
|---|---|
|
| 268 |
+
|learning rate|3e-5|
|
| 269 |
+
|batch size|1|
|
| 270 |
+
|gradient accumulation steps|16|
|
| 271 |
+
|num train epochs|20|
|
| 272 |
+
|weight decay|0.01|
|
| 273 |
+
|
| 274 |
## Evaluation
|
| 275 |
|
| 276 |
|