chintagunta85 commited on
Commit
1674d84
·
1 Parent(s): 855adb3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - precision
6
+ - recall
7
+ - f1
8
+ - accuracy
9
+ model-index:
10
+ - name: electramed-small-ADE-ner
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # electramed-small-ADE-ner
18
+
19
+ This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.1548
22
+ - Precision: 0.8358
23
+ - Recall: 0.9064
24
+ - F1: 0.8697
25
+ - Accuracy: 0.9581
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 2e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 10
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
56
+ | 0.5587 | 1.0 | 201 | 0.4107 | 0.7291 | 0.7982 | 0.7621 | 0.8983 |
57
+ | 0.2114 | 2.0 | 402 | 0.2663 | 0.7716 | 0.8826 | 0.8234 | 0.9445 |
58
+ | 0.1421 | 3.0 | 603 | 0.2183 | 0.8033 | 0.9030 | 0.8502 | 0.9488 |
59
+ | 0.2204 | 4.0 | 804 | 0.1878 | 0.8279 | 0.9012 | 0.8630 | 0.9553 |
60
+ | 0.5825 | 5.0 | 1005 | 0.1712 | 0.8289 | 0.8967 | 0.8615 | 0.9566 |
61
+ | 0.0685 | 6.0 | 1206 | 0.1647 | 0.8333 | 0.9067 | 0.8685 | 0.9572 |
62
+ | 0.0973 | 7.0 | 1407 | 0.1593 | 0.8365 | 0.9049 | 0.8693 | 0.9578 |
63
+ | 0.1683 | 8.0 | 1608 | 0.1574 | 0.8367 | 0.9082 | 0.8710 | 0.9577 |
64
+ | 0.065 | 9.0 | 1809 | 0.1557 | 0.8397 | 0.9052 | 0.8712 | 0.9583 |
65
+ | 0.179 | 10.0 | 2010 | 0.1548 | 0.8358 | 0.9064 | 0.8697 | 0.9581 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.21.1
71
+ - Pytorch 1.12.1+cu113
72
+ - Datasets 2.4.0
73
+ - Tokenizers 0.12.1