--- library_name: transformers license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: MTSUFall2024SoftwareEngineering results: [] datasets: - cheaptrix/UnitedStatesSentateAndHouseBillsAndSummaries language: - en --- # MTSUFall2024SoftwareEngineering This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7579 - Rouge1: 0.268 - Rouge2: 0.2083 - Rougel: 0.258 - Rougelsum: 0.2582 - Gen Len: 18.9805 ## Model description This model is a fine-tuned Google T5-Small model that is fine-tuned to summarize United States Senate and House Bills. ## Intended uses & limitations Summarize United States Federal Legislation. ## Training and evaluation data Trained on ~51.9k bills and summaries. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 14 - eval_batch_size: 14 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.1182 | 1.0 | 3708 | 1.8807 | 0.2643 | 0.2029 | 0.2533 | 0.2534 | 18.9817 | | 1.999 | 2.0 | 7416 | 1.8013 | 0.2663 | 0.2053 | 0.2558 | 0.2559 | 18.9833 | | 1.9739 | 3.0 | 11124 | 1.7681 | 0.267 | 0.2066 | 0.2568 | 0.2569 | 18.9816 | | 1.9448 | 4.0 | 14832 | 1.7579 | 0.268 | 0.2083 | 0.258 | 0.2582 | 18.9805 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1