chchen commited on
Commit
90399e7
·
verified ·
1 Parent(s): 75b390f

Training in progress, step 1500

Browse files
Files changed (2) hide show
  1. adapter_model.safetensors +1 -1
  2. trainer_log.jsonl +51 -0
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:79737c9ed656852f36f4e2391d56f94b51648b5b48ad66958d47215832081886
3
  size 80013120
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d896652bcae220b92b55719c0978364dab07090b54df2a88404a08d285436087
3
  size 80013120
trainer_log.jsonl CHANGED
@@ -100,3 +100,54 @@
100
  {"current_steps": 990, "total_steps": 1854, "loss": 0.9171, "accuracy": 0.550000011920929, "learning_rate": 2.2338200545580577e-06, "epoch": 1.600323297635886, "percentage": 53.4, "elapsed_time": "2:38:05", "remaining_time": "2:17:58"}
101
  {"current_steps": 1000, "total_steps": 1854, "loss": 0.8458, "accuracy": 0.5562499761581421, "learning_rate": 2.191736455761947e-06, "epoch": 1.616488179430188, "percentage": 53.94, "elapsed_time": "2:39:34", "remaining_time": "2:16:16"}
102
  {"current_steps": 1000, "total_steps": 1854, "eval_loss": 0.9560017585754395, "epoch": 1.616488179430188, "percentage": 53.94, "elapsed_time": "2:42:46", "remaining_time": "2:19:00"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  {"current_steps": 990, "total_steps": 1854, "loss": 0.9171, "accuracy": 0.550000011920929, "learning_rate": 2.2338200545580577e-06, "epoch": 1.600323297635886, "percentage": 53.4, "elapsed_time": "2:38:05", "remaining_time": "2:17:58"}
101
  {"current_steps": 1000, "total_steps": 1854, "loss": 0.8458, "accuracy": 0.5562499761581421, "learning_rate": 2.191736455761947e-06, "epoch": 1.616488179430188, "percentage": 53.94, "elapsed_time": "2:39:34", "remaining_time": "2:16:16"}
102
  {"current_steps": 1000, "total_steps": 1854, "eval_loss": 0.9560017585754395, "epoch": 1.616488179430188, "percentage": 53.94, "elapsed_time": "2:42:46", "remaining_time": "2:19:00"}
103
+ {"current_steps": 1010, "total_steps": 1854, "loss": 0.9769, "accuracy": 0.5625, "learning_rate": 2.1497413764574673e-06, "epoch": 1.6326530612244898, "percentage": 54.48, "elapsed_time": "2:44:33", "remaining_time": "2:17:30"}
104
+ {"current_steps": 1020, "total_steps": 1854, "loss": 0.943, "accuracy": 0.5375000238418579, "learning_rate": 2.1078468757516395e-06, "epoch": 1.6488179430187917, "percentage": 55.02, "elapsed_time": "2:46:05", "remaining_time": "2:15:47"}
105
+ {"current_steps": 1030, "total_steps": 1854, "loss": 0.9471, "accuracy": 0.46875, "learning_rate": 2.0660649838698145e-06, "epoch": 1.6649828248130936, "percentage": 55.56, "elapsed_time": "2:47:39", "remaining_time": "2:14:07"}
106
+ {"current_steps": 1040, "total_steps": 1854, "loss": 0.9776, "accuracy": 0.543749988079071, "learning_rate": 2.0244076987011284e-06, "epoch": 1.6811477066073954, "percentage": 56.09, "elapsed_time": "2:49:14", "remaining_time": "2:12:28"}
107
+ {"current_steps": 1050, "total_steps": 1854, "loss": 0.9472, "accuracy": 0.5375000238418579, "learning_rate": 1.982886982353251e-06, "epoch": 1.6973125884016973, "percentage": 56.63, "elapsed_time": "2:50:49", "remaining_time": "2:10:47"}
108
+ {"current_steps": 1060, "total_steps": 1854, "loss": 0.921, "accuracy": 0.5375000238418579, "learning_rate": 1.941514757717392e-06, "epoch": 1.7134774701959992, "percentage": 57.17, "elapsed_time": "2:52:25", "remaining_time": "2:09:09"}
109
+ {"current_steps": 1070, "total_steps": 1854, "loss": 0.9734, "accuracy": 0.512499988079071, "learning_rate": 1.9003029050445953e-06, "epoch": 1.729642351990301, "percentage": 57.71, "elapsed_time": "2:54:03", "remaining_time": "2:07:32"}
110
+ {"current_steps": 1080, "total_steps": 1854, "loss": 0.9396, "accuracy": 0.5249999761581421, "learning_rate": 1.8592632585342523e-06, "epoch": 1.745807233784603, "percentage": 58.25, "elapsed_time": "2:55:37", "remaining_time": "2:05:51"}
111
+ {"current_steps": 1090, "total_steps": 1854, "loss": 0.9053, "accuracy": 0.5, "learning_rate": 1.8184076029358527e-06, "epoch": 1.7619721155789048, "percentage": 58.79, "elapsed_time": "2:57:09", "remaining_time": "2:04:10"}
112
+ {"current_steps": 1100, "total_steps": 1854, "loss": 0.9752, "accuracy": 0.543749988079071, "learning_rate": 1.7777476701649318e-06, "epoch": 1.7781369973732066, "percentage": 59.33, "elapsed_time": "2:58:46", "remaining_time": "2:02:32"}
113
+ {"current_steps": 1110, "total_steps": 1854, "loss": 0.8994, "accuracy": 0.5062500238418579, "learning_rate": 1.7372951359341925e-06, "epoch": 1.7943018791675085, "percentage": 59.87, "elapsed_time": "3:00:16", "remaining_time": "2:00:50"}
114
+ {"current_steps": 1120, "total_steps": 1854, "loss": 0.8967, "accuracy": 0.543749988079071, "learning_rate": 1.6970616164007547e-06, "epoch": 1.8104667609618104, "percentage": 60.41, "elapsed_time": "3:01:44", "remaining_time": "1:59:06"}
115
+ {"current_steps": 1130, "total_steps": 1854, "loss": 0.9437, "accuracy": 0.5625, "learning_rate": 1.6570586648305276e-06, "epoch": 1.8266316427561122, "percentage": 60.95, "elapsed_time": "3:03:16", "remaining_time": "1:57:25"}
116
+ {"current_steps": 1140, "total_steps": 1854, "loss": 0.9326, "accuracy": 0.550000011920929, "learning_rate": 1.6172977682806151e-06, "epoch": 1.842796524550414, "percentage": 61.49, "elapsed_time": "3:04:48", "remaining_time": "1:55:45"}
117
+ {"current_steps": 1150, "total_steps": 1854, "loss": 0.9689, "accuracy": 0.518750011920929, "learning_rate": 1.5777903443007586e-06, "epoch": 1.858961406344716, "percentage": 62.03, "elapsed_time": "3:06:22", "remaining_time": "1:54:05"}
118
+ {"current_steps": 1160, "total_steps": 1854, "loss": 0.9893, "accuracy": 0.550000011920929, "learning_rate": 1.5385477376547226e-06, "epoch": 1.8751262881390178, "percentage": 62.57, "elapsed_time": "3:07:57", "remaining_time": "1:52:26"}
119
+ {"current_steps": 1170, "total_steps": 1854, "loss": 0.9543, "accuracy": 0.518750011920929, "learning_rate": 1.4995812170625845e-06, "epoch": 1.89129116993332, "percentage": 63.11, "elapsed_time": "3:09:32", "remaining_time": "1:50:48"}
120
+ {"current_steps": 1180, "total_steps": 1854, "loss": 0.9778, "accuracy": 0.543749988079071, "learning_rate": 1.4609019719648666e-06, "epoch": 1.9074560517276218, "percentage": 63.65, "elapsed_time": "3:11:07", "remaining_time": "1:49:10"}
121
+ {"current_steps": 1190, "total_steps": 1854, "loss": 0.8972, "accuracy": 0.574999988079071, "learning_rate": 1.42252110930943e-06, "epoch": 1.9236209335219236, "percentage": 64.19, "elapsed_time": "3:12:35", "remaining_time": "1:47:27"}
122
+ {"current_steps": 1200, "total_steps": 1854, "loss": 0.9217, "accuracy": 0.512499988079071, "learning_rate": 1.3844496503620493e-06, "epoch": 1.9397858153162255, "percentage": 64.72, "elapsed_time": "3:14:12", "remaining_time": "1:45:50"}
123
+ {"current_steps": 1210, "total_steps": 1854, "loss": 1.0086, "accuracy": 0.5062500238418579, "learning_rate": 1.3466985275416081e-06, "epoch": 1.9559506971105274, "percentage": 65.26, "elapsed_time": "3:15:49", "remaining_time": "1:44:13"}
124
+ {"current_steps": 1220, "total_steps": 1854, "loss": 0.8897, "accuracy": 0.59375, "learning_rate": 1.309278581280791e-06, "epoch": 1.9721155789048292, "percentage": 65.8, "elapsed_time": "3:17:21", "remaining_time": "1:42:33"}
125
+ {"current_steps": 1230, "total_steps": 1854, "loss": 0.9729, "accuracy": 0.5, "learning_rate": 1.272200556913199e-06, "epoch": 1.9882804606991311, "percentage": 66.34, "elapsed_time": "3:18:56", "remaining_time": "1:40:55"}
126
+ {"current_steps": 1240, "total_steps": 1854, "loss": 0.8947, "accuracy": 0.574999988079071, "learning_rate": 1.2354751015877698e-06, "epoch": 2.004445342493433, "percentage": 66.88, "elapsed_time": "3:20:28", "remaining_time": "1:39:15"}
127
+ {"current_steps": 1250, "total_steps": 1854, "loss": 0.9609, "accuracy": 0.543749988079071, "learning_rate": 1.1991127612113945e-06, "epoch": 2.020610224287735, "percentage": 67.42, "elapsed_time": "3:22:03", "remaining_time": "1:37:37"}
128
+ {"current_steps": 1260, "total_steps": 1854, "loss": 0.9325, "accuracy": 0.46875, "learning_rate": 1.1631239774206035e-06, "epoch": 2.036775106082037, "percentage": 67.96, "elapsed_time": "3:23:33", "remaining_time": "1:35:57"}
129
+ {"current_steps": 1270, "total_steps": 1854, "loss": 0.9484, "accuracy": 0.606249988079071, "learning_rate": 1.1275190845831978e-06, "epoch": 2.052939987876339, "percentage": 68.5, "elapsed_time": "3:25:11", "remaining_time": "1:34:21"}
130
+ {"current_steps": 1280, "total_steps": 1854, "loss": 0.94, "accuracy": 0.5562499761581421, "learning_rate": 1.0923083068306778e-06, "epoch": 2.0691048696706407, "percentage": 69.04, "elapsed_time": "3:26:48", "remaining_time": "1:32:44"}
131
+ {"current_steps": 1290, "total_steps": 1854, "loss": 0.8412, "accuracy": 0.5249999761581421, "learning_rate": 1.0575017551223348e-06, "epoch": 2.0852697514649425, "percentage": 69.58, "elapsed_time": "3:28:18", "remaining_time": "1:31:04"}
132
+ {"current_steps": 1300, "total_steps": 1854, "loss": 0.9444, "accuracy": 0.5375000238418579, "learning_rate": 1.023109424341833e-06, "epoch": 2.1014346332592444, "percentage": 70.12, "elapsed_time": "3:29:52", "remaining_time": "1:29:26"}
133
+ {"current_steps": 1310, "total_steps": 1854, "loss": 0.9076, "accuracy": 0.5687500238418579, "learning_rate": 9.891411904271273e-07, "epoch": 2.1175995150535463, "percentage": 70.66, "elapsed_time": "3:31:26", "remaining_time": "1:27:48"}
134
+ {"current_steps": 1320, "total_steps": 1854, "loss": 0.9162, "accuracy": 0.550000011920929, "learning_rate": 9.556068075345363e-07, "epoch": 2.133764396847848, "percentage": 71.2, "elapsed_time": "3:33:00", "remaining_time": "1:26:10"}
135
+ {"current_steps": 1330, "total_steps": 1854, "loss": 0.9658, "accuracy": 0.5625, "learning_rate": 9.225159052377838e-07, "epoch": 2.14992927864215, "percentage": 71.74, "elapsed_time": "3:34:35", "remaining_time": "1:24:32"}
136
+ {"current_steps": 1340, "total_steps": 1854, "loss": 0.8306, "accuracy": 0.550000011920929, "learning_rate": 8.898779857628184e-07, "epoch": 2.166094160436452, "percentage": 72.28, "elapsed_time": "3:36:08", "remaining_time": "1:22:54"}
137
+ {"current_steps": 1350, "total_steps": 1854, "loss": 0.9639, "accuracy": 0.4937500059604645, "learning_rate": 8.577024212591975e-07, "epoch": 2.1822590422307537, "percentage": 72.82, "elapsed_time": "3:37:42", "remaining_time": "1:21:16"}
138
+ {"current_steps": 1360, "total_steps": 1854, "loss": 0.9451, "accuracy": 0.5062500238418579, "learning_rate": 8.259984511088276e-07, "epoch": 2.1984239240250556, "percentage": 73.35, "elapsed_time": "3:39:16", "remaining_time": "1:19:38"}
139
+ {"current_steps": 1370, "total_steps": 1854, "loss": 0.9559, "accuracy": 0.550000011920929, "learning_rate": 7.947751792728237e-07, "epoch": 2.2145888058193575, "percentage": 73.89, "elapsed_time": "3:40:47", "remaining_time": "1:18:00"}
140
+ {"current_steps": 1380, "total_steps": 1854, "loss": 0.9579, "accuracy": 0.543749988079071, "learning_rate": 7.640415716772626e-07, "epoch": 2.2307536876136593, "percentage": 74.43, "elapsed_time": "3:42:26", "remaining_time": "1:16:24"}
141
+ {"current_steps": 1390, "total_steps": 1854, "loss": 0.9136, "accuracy": 0.5375000238418579, "learning_rate": 7.338064536385722e-07, "epoch": 2.246918569407961, "percentage": 74.97, "elapsed_time": "3:44:03", "remaining_time": "1:14:47"}
142
+ {"current_steps": 1400, "total_steps": 1854, "loss": 1.0184, "accuracy": 0.48750001192092896, "learning_rate": 7.040785073292883e-07, "epoch": 2.263083451202263, "percentage": 75.51, "elapsed_time": "3:45:36", "remaining_time": "1:13:09"}
143
+ {"current_steps": 1410, "total_steps": 1854, "loss": 0.9275, "accuracy": 0.5249999761581421, "learning_rate": 6.748662692849297e-07, "epoch": 2.279248332996565, "percentage": 76.05, "elapsed_time": "3:47:09", "remaining_time": "1:11:31"}
144
+ {"current_steps": 1420, "total_steps": 1854, "loss": 0.9025, "accuracy": 0.512499988079071, "learning_rate": 6.46178127952686e-07, "epoch": 2.295413214790867, "percentage": 76.59, "elapsed_time": "3:48:41", "remaining_time": "1:09:53"}
145
+ {"current_steps": 1430, "total_steps": 1854, "loss": 0.9249, "accuracy": 0.5249999761581421, "learning_rate": 6.180223212826289e-07, "epoch": 2.3115780965851687, "percentage": 77.13, "elapsed_time": "3:50:13", "remaining_time": "1:08:15"}
146
+ {"current_steps": 1440, "total_steps": 1854, "loss": 0.9766, "accuracy": 0.5625, "learning_rate": 5.904069343621443e-07, "epoch": 2.3277429783794705, "percentage": 77.67, "elapsed_time": "3:51:49", "remaining_time": "1:06:39"}
147
+ {"current_steps": 1450, "total_steps": 1854, "loss": 0.8927, "accuracy": 0.5, "learning_rate": 5.633398970942544e-07, "epoch": 2.3439078601737724, "percentage": 78.21, "elapsed_time": "3:53:21", "remaining_time": "1:05:01"}
148
+ {"current_steps": 1460, "total_steps": 1854, "loss": 0.8585, "accuracy": 0.518750011920929, "learning_rate": 5.368289819205069e-07, "epoch": 2.3600727419680743, "percentage": 78.75, "elapsed_time": "3:54:49", "remaining_time": "1:03:22"}
149
+ {"current_steps": 1470, "total_steps": 1854, "loss": 0.9531, "accuracy": 0.518750011920929, "learning_rate": 5.108818015890785e-07, "epoch": 2.376237623762376, "percentage": 79.29, "elapsed_time": "3:56:25", "remaining_time": "1:01:45"}
150
+ {"current_steps": 1480, "total_steps": 1854, "loss": 0.9111, "accuracy": 0.543749988079071, "learning_rate": 4.855058069687291e-07, "epoch": 2.392402505556678, "percentage": 79.83, "elapsed_time": "3:57:55", "remaining_time": "1:00:07"}
151
+ {"current_steps": 1490, "total_steps": 1854, "loss": 1.0107, "accuracy": 0.512499988079071, "learning_rate": 4.607082849092523e-07, "epoch": 2.40856738735098, "percentage": 80.37, "elapsed_time": "3:59:34", "remaining_time": "0:58:31"}
152
+ {"current_steps": 1500, "total_steps": 1854, "loss": 0.9219, "accuracy": 0.5062500238418579, "learning_rate": 4.3649635614901405e-07, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "4:01:09", "remaining_time": "0:56:54"}
153
+ {"current_steps": 1500, "total_steps": 1854, "eval_loss": 0.9497246742248535, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "4:04:22", "remaining_time": "0:57:40"}