--- library_name: peft license: other base_model: mistralai/Ministral-8B-Instruct-2410 tags: - llama-factory - lora - generated_from_trainer model-index: - name: Ministral-8B-Instruct-2410-PsyCourse-fold3 results: [] --- # Ministral-8B-Instruct-2410-PsyCourse-fold3 This model is a fine-tuned version of [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) on the course-train-fold1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2581 | 0.0770 | 50 | 0.2414 | | 0.0852 | 0.1539 | 100 | 0.0696 | | 0.0612 | 0.2309 | 150 | 0.0584 | | 0.0579 | 0.3078 | 200 | 0.0537 | | 0.0436 | 0.3848 | 250 | 0.0433 | | 0.0395 | 0.4617 | 300 | 0.0470 | | 0.0436 | 0.5387 | 350 | 0.0454 | | 0.0487 | 0.6156 | 400 | 0.0436 | | 0.0302 | 0.6926 | 450 | 0.0377 | | 0.0301 | 0.7695 | 500 | 0.0377 | | 0.0422 | 0.8465 | 550 | 0.0353 | | 0.0352 | 0.9234 | 600 | 0.0341 | | 0.0327 | 1.0004 | 650 | 0.0346 | | 0.0328 | 1.0773 | 700 | 0.0361 | | 0.0278 | 1.1543 | 750 | 0.0347 | | 0.0277 | 1.2312 | 800 | 0.0336 | | 0.0278 | 1.3082 | 850 | 0.0347 | | 0.0208 | 1.3851 | 900 | 0.0341 | | 0.037 | 1.4621 | 950 | 0.0345 | | 0.0335 | 1.5391 | 1000 | 0.0357 | | 0.0305 | 1.6160 | 1050 | 0.0322 | | 0.0337 | 1.6930 | 1100 | 0.0377 | | 0.0221 | 1.7699 | 1150 | 0.0325 | | 0.0192 | 1.8469 | 1200 | 0.0378 | | 0.0282 | 1.9238 | 1250 | 0.0325 | | 0.0216 | 2.0008 | 1300 | 0.0309 | | 0.0172 | 2.0777 | 1350 | 0.0312 | | 0.0238 | 2.1547 | 1400 | 0.0342 | | 0.0118 | 2.2316 | 1450 | 0.0379 | | 0.02 | 2.3086 | 1500 | 0.0349 | | 0.0162 | 2.3855 | 1550 | 0.0389 | | 0.0138 | 2.4625 | 1600 | 0.0367 | | 0.0193 | 2.5394 | 1650 | 0.0348 | | 0.0208 | 2.6164 | 1700 | 0.0356 | | 0.0228 | 2.6933 | 1750 | 0.0326 | | 0.0195 | 2.7703 | 1800 | 0.0323 | | 0.0219 | 2.8472 | 1850 | 0.0317 | | 0.0169 | 2.9242 | 1900 | 0.0329 | | 0.0235 | 3.0012 | 1950 | 0.0340 | | 0.0092 | 3.0781 | 2000 | 0.0377 | | 0.0107 | 3.1551 | 2050 | 0.0413 | | 0.0093 | 3.2320 | 2100 | 0.0398 | | 0.0076 | 3.3090 | 2150 | 0.0406 | | 0.0115 | 3.3859 | 2200 | 0.0380 | | 0.0065 | 3.4629 | 2250 | 0.0371 | | 0.0115 | 3.5398 | 2300 | 0.0394 | | 0.006 | 3.6168 | 2350 | 0.0399 | | 0.0119 | 3.6937 | 2400 | 0.0366 | | 0.0068 | 3.7707 | 2450 | 0.0387 | | 0.0079 | 3.8476 | 2500 | 0.0394 | | 0.0092 | 3.9246 | 2550 | 0.0405 | | 0.0088 | 4.0015 | 2600 | 0.0393 | | 0.0017 | 4.0785 | 2650 | 0.0415 | | 0.0076 | 4.1554 | 2700 | 0.0446 | | 0.0017 | 4.2324 | 2750 | 0.0453 | | 0.0027 | 4.3093 | 2800 | 0.0469 | | 0.003 | 4.3863 | 2850 | 0.0485 | | 0.0047 | 4.4633 | 2900 | 0.0493 | | 0.0021 | 4.5402 | 2950 | 0.0484 | | 0.0031 | 4.6172 | 3000 | 0.0485 | | 0.0036 | 4.6941 | 3050 | 0.0488 | | 0.0028 | 4.7711 | 3100 | 0.0488 | | 0.0031 | 4.8480 | 3150 | 0.0487 | | 0.0035 | 4.9250 | 3200 | 0.0487 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3