File size: 4,894 Bytes
1e5023d
 
 
 
 
 
874210e
1e5023d
 
 
 
 
 
 
 
 
 
 
874210e
1e5023d
874210e
1e5023d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
library_name: peft
license: other
base_model: mistralai/Ministral-8B-Instruct-2410
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: Ministral-8B-Instruct-2410-PsyCourse-fold3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Ministral-8B-Instruct-2410-PsyCourse-fold3

This model is a fine-tuned version of [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) on the course-train-fold1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0309

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.2581        | 0.0770 | 50   | 0.2414          |
| 0.0852        | 0.1539 | 100  | 0.0696          |
| 0.0612        | 0.2309 | 150  | 0.0584          |
| 0.0579        | 0.3078 | 200  | 0.0537          |
| 0.0436        | 0.3848 | 250  | 0.0433          |
| 0.0395        | 0.4617 | 300  | 0.0470          |
| 0.0436        | 0.5387 | 350  | 0.0454          |
| 0.0487        | 0.6156 | 400  | 0.0436          |
| 0.0302        | 0.6926 | 450  | 0.0377          |
| 0.0301        | 0.7695 | 500  | 0.0377          |
| 0.0422        | 0.8465 | 550  | 0.0353          |
| 0.0352        | 0.9234 | 600  | 0.0341          |
| 0.0327        | 1.0004 | 650  | 0.0346          |
| 0.0328        | 1.0773 | 700  | 0.0361          |
| 0.0278        | 1.1543 | 750  | 0.0347          |
| 0.0277        | 1.2312 | 800  | 0.0336          |
| 0.0278        | 1.3082 | 850  | 0.0347          |
| 0.0208        | 1.3851 | 900  | 0.0341          |
| 0.037         | 1.4621 | 950  | 0.0345          |
| 0.0335        | 1.5391 | 1000 | 0.0357          |
| 0.0305        | 1.6160 | 1050 | 0.0322          |
| 0.0337        | 1.6930 | 1100 | 0.0377          |
| 0.0221        | 1.7699 | 1150 | 0.0325          |
| 0.0192        | 1.8469 | 1200 | 0.0378          |
| 0.0282        | 1.9238 | 1250 | 0.0325          |
| 0.0216        | 2.0008 | 1300 | 0.0309          |
| 0.0172        | 2.0777 | 1350 | 0.0312          |
| 0.0238        | 2.1547 | 1400 | 0.0342          |
| 0.0118        | 2.2316 | 1450 | 0.0379          |
| 0.02          | 2.3086 | 1500 | 0.0349          |
| 0.0162        | 2.3855 | 1550 | 0.0389          |
| 0.0138        | 2.4625 | 1600 | 0.0367          |
| 0.0193        | 2.5394 | 1650 | 0.0348          |
| 0.0208        | 2.6164 | 1700 | 0.0356          |
| 0.0228        | 2.6933 | 1750 | 0.0326          |
| 0.0195        | 2.7703 | 1800 | 0.0323          |
| 0.0219        | 2.8472 | 1850 | 0.0317          |
| 0.0169        | 2.9242 | 1900 | 0.0329          |
| 0.0235        | 3.0012 | 1950 | 0.0340          |
| 0.0092        | 3.0781 | 2000 | 0.0377          |
| 0.0107        | 3.1551 | 2050 | 0.0413          |
| 0.0093        | 3.2320 | 2100 | 0.0398          |
| 0.0076        | 3.3090 | 2150 | 0.0406          |
| 0.0115        | 3.3859 | 2200 | 0.0380          |
| 0.0065        | 3.4629 | 2250 | 0.0371          |
| 0.0115        | 3.5398 | 2300 | 0.0394          |
| 0.006         | 3.6168 | 2350 | 0.0399          |
| 0.0119        | 3.6937 | 2400 | 0.0366          |
| 0.0068        | 3.7707 | 2450 | 0.0387          |
| 0.0079        | 3.8476 | 2500 | 0.0394          |
| 0.0092        | 3.9246 | 2550 | 0.0405          |
| 0.0088        | 4.0015 | 2600 | 0.0393          |
| 0.0017        | 4.0785 | 2650 | 0.0415          |
| 0.0076        | 4.1554 | 2700 | 0.0446          |
| 0.0017        | 4.2324 | 2750 | 0.0453          |
| 0.0027        | 4.3093 | 2800 | 0.0469          |
| 0.003         | 4.3863 | 2850 | 0.0485          |
| 0.0047        | 4.4633 | 2900 | 0.0493          |
| 0.0021        | 4.5402 | 2950 | 0.0484          |
| 0.0031        | 4.6172 | 3000 | 0.0485          |
| 0.0036        | 4.6941 | 3050 | 0.0488          |
| 0.0028        | 4.7711 | 3100 | 0.0488          |
| 0.0031        | 4.8480 | 3150 | 0.0487          |
| 0.0035        | 4.9250 | 3200 | 0.0487          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3