File size: 4,927 Bytes
d1625f0
 
 
 
 
 
ba9421c
d1625f0
 
 
 
 
 
 
 
 
 
 
0f118c3
d1625f0
0f118c3
d1625f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c79fd5
d1625f0
 
 
 
 
4c79fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1625f0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
library_name: peft
license: llama3.1
base_model: meta-llama/Llama-3.1-8B-Instruct
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: Llama-3.1-8B-Instruct-PsyCourse-fold5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-3.1-8B-Instruct-PsyCourse-fold5

This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the course-train-fold5 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0336

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6474        | 0.0758 | 50   | 0.4173          |
| 0.0891        | 0.1517 | 100  | 0.0932          |
| 0.0787        | 0.2275 | 150  | 0.0860          |
| 0.059         | 0.3033 | 200  | 0.0593          |
| 0.053         | 0.3791 | 250  | 0.0517          |
| 0.0489        | 0.4550 | 300  | 0.0463          |
| 0.0525        | 0.5308 | 350  | 0.0471          |
| 0.0651        | 0.6066 | 400  | 0.0472          |
| 0.0552        | 0.6825 | 450  | 0.0467          |
| 0.0317        | 0.7583 | 500  | 0.0416          |
| 0.0313        | 0.8341 | 550  | 0.0426          |
| 0.0441        | 0.9100 | 600  | 0.0429          |
| 0.0436        | 0.9858 | 650  | 0.0390          |
| 0.0324        | 1.0616 | 700  | 0.0417          |
| 0.0356        | 1.1374 | 750  | 0.0421          |
| 0.0368        | 1.2133 | 800  | 0.0378          |
| 0.0322        | 1.2891 | 850  | 0.0418          |
| 0.0242        | 1.3649 | 900  | 0.0404          |
| 0.0278        | 1.4408 | 950  | 0.0395          |
| 0.0391        | 1.5166 | 1000 | 0.0356          |
| 0.0294        | 1.5924 | 1050 | 0.0360          |
| 0.023         | 1.6682 | 1100 | 0.0359          |
| 0.0282        | 1.7441 | 1150 | 0.0372          |
| 0.0343        | 1.8199 | 1200 | 0.0359          |
| 0.0335        | 1.8957 | 1250 | 0.0339          |
| 0.0389        | 1.9716 | 1300 | 0.0357          |
| 0.0277        | 2.0474 | 1350 | 0.0351          |
| 0.0193        | 2.1232 | 1400 | 0.0343          |
| 0.0211        | 2.1991 | 1450 | 0.0354          |
| 0.0149        | 2.2749 | 1500 | 0.0352          |
| 0.0258        | 2.3507 | 1550 | 0.0337          |
| 0.0255        | 2.4265 | 1600 | 0.0359          |
| 0.014         | 2.5024 | 1650 | 0.0377          |
| 0.0265        | 2.5782 | 1700 | 0.0336          |
| 0.0211        | 2.6540 | 1750 | 0.0344          |
| 0.0278        | 2.7299 | 1800 | 0.0355          |
| 0.0253        | 2.8057 | 1850 | 0.0363          |
| 0.0178        | 2.8815 | 1900 | 0.0345          |
| 0.0302        | 2.9573 | 1950 | 0.0340          |
| 0.0091        | 3.0332 | 2000 | 0.0358          |
| 0.0072        | 3.1090 | 2050 | 0.0411          |
| 0.0126        | 3.1848 | 2100 | 0.0394          |
| 0.0108        | 3.2607 | 2150 | 0.0404          |
| 0.0101        | 3.3365 | 2200 | 0.0381          |
| 0.0077        | 3.4123 | 2250 | 0.0382          |
| 0.0096        | 3.4882 | 2300 | 0.0379          |
| 0.0077        | 3.5640 | 2350 | 0.0392          |
| 0.015         | 3.6398 | 2400 | 0.0381          |
| 0.0095        | 3.7156 | 2450 | 0.0401          |
| 0.0174        | 3.7915 | 2500 | 0.0395          |
| 0.0105        | 3.8673 | 2550 | 0.0393          |
| 0.014         | 3.9431 | 2600 | 0.0385          |
| 0.0086        | 4.0190 | 2650 | 0.0402          |
| 0.005         | 4.0948 | 2700 | 0.0439          |
| 0.0044        | 4.1706 | 2750 | 0.0487          |
| 0.0032        | 4.2464 | 2800 | 0.0490          |
| 0.0052        | 4.3223 | 2850 | 0.0489          |
| 0.0089        | 4.3981 | 2900 | 0.0493          |
| 0.0095        | 4.4739 | 2950 | 0.0490          |
| 0.0049        | 4.5498 | 3000 | 0.0487          |
| 0.0025        | 4.6256 | 3050 | 0.0492          |
| 0.0066        | 4.7014 | 3100 | 0.0498          |
| 0.0089        | 4.7773 | 3150 | 0.0500          |
| 0.0021        | 4.8531 | 3200 | 0.0500          |
| 0.0056        | 4.9289 | 3250 | 0.0499          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3