Commit
·
9224a45
1
Parent(s):
3655ac7
Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +1 -1
- a2c-AntBulletEnv-v0/data +17 -17
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1565.71 +/- 269.62
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 129247
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dfc8f30882e302c72d2f790ebf1d41293d41076d3ecc45939c3ef74eeae2b10
|
3 |
size 129247
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -37,7 +37,7 @@
|
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
-
"start_time":
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
@@ -46,7 +46,7 @@
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
-
":serialized:": "
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -54,7 +54,7 @@
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
-
":serialized:": "
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
@@ -63,7 +63,7 @@
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
-
":serialized:": "
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7aeec050c550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7aeec050c5e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7aeec050c670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7aeec050c700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7aeec050c790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7aeec050c820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7aeec050c8b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7aeec050c940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7aeec050c9d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7aeec050ca60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7aeec050caf0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7aeec050cb80>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7aeec0511cc0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
+
"start_time": 1691297479442851405,
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFOQWT49NeY/A8N9v8EHsz9f4pC+5LTRPut8wT5YXq6+vFsnP2blDb9g/0g/sXdCvzMMPb/nMjE/7JoOv0poFz/L4X+/9QrLvVwMKj/dbhK/Z1Z3P/k/XL+B7Ju+2V7EP8Kmez+xChM/DvoNPx8Jgr9gRmE+xcPwP6Oilb8LFf4+kx4QPoNZK8AhI6A+E0XNvtsRQb+R0be/ecmnPrJDA0Dy3AQ+rKI9v3Q9Bz/4N22/ZSkLP3pTsL/j1Rw/FtZjv0lzb7zSMr0/RyCeO8N6IcA9NoK/Jtnev17M5r8fCYK/iNOCP95zNr5ABQE//faYP2dLhT4bpr0/bIyyPwONAL9zsyY/tzCmvq5jEEAEpmK/sD0WPV4nrT/eYNu/08lwP4i1gr4CLR0/YKxWP7DXdTwYrcK+5yZNv0mSSz53YXU+PTaCv7EKEz8O+g0/Ev57P+AukD8DDHS+5Db+PuVWHT9y4eI+wylOv89dnz86UZa/OeMnP91VXLyTLRRA49lTvwRcrr33ob4/wROXv7eXLz45IQI/ripSP32OVj+HasI/qA3vPwvnUL9k3oA/g00YQD02gr+xChM/DvoNPx8Jgr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABvKo42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+dqzvQAAAABKhOu/AAAAAKs/P7wAAAAAPLPzPwAAAAAqd5g9AAAAACPG3T8AAAAALw0EvQAAAABZEOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8O9WtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCpWBjwAAAAAW+fvvwAAAABoRRE9AAAAADCY+D8AAAAA6jf0vQAAAACnafo/AAAAAK9QhL0AAAAA9YT8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGKoaLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBQTNg9AAAAAB5j/r8AAAAA6yXfOgAAAAB56f4/AAAAADOswz0AAAAAhMT2PwAAAADMxvg8AAAAAJP63L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBaeA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAC9LcvQAAAADvGPm/AAAAAMFzgj0AAAAAWaDfPwAAAACRsFo9AAAAAL6W3T8AAAAAVw5zvQAAAAAHaei/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJAVZiobXH2MAWyUTegDjAF0lEdAq3xboyKvV3V9lChoBkdAlD2E7bL2YmgHTegDaAhHQKt9Xs54nnd1fZQoaAZHQJfLQxO+IuZoB03oA2gIR0Crf+vcBU70dX2UKGgGR0CZNHBVMmF8aAdN6ANoCEdAq4Lv557gKnV9lChoBkdAmBZ8JQcghmgHTegDaAhHQKuKxxhlUZN1fZQoaAZHQJVjhe4TbnJoB03oA2gIR0Cri2A4XGfgdX2UKGgGR0CVcWC3gDRuaAdN6ANoCEdAq40t1ZDArXV9lChoBkdAlNMq24NI9WgHTegDaAhHQKuQG7pV0cR1fZQoaAZHQJOkQWweNkxoB03oA2gIR0Crmmve54GEdX2UKGgGR0CaeGoW56MSaAdN6ANoCEdAq5tAkmhM8HV9lChoBkdAlqvymEXcg2gHTegDaAhHQKudEdWhh6V1fZQoaAZHQIhmk6tDD0loB03oA2gIR0Crn+66reZYdX2UKGgGR0CU6yJ/5LyuaAdN6ANoCEdAq6eg9Pk7wXV9lChoBkdAlLmTK1XvIGgHTegDaAhHQKuoOXVsk6d1fZQoaAZHQJc7COU+s5poB03oA2gIR0CrqgtQKrq/dX2UKGgGR0CYfQha1TisaAdN6ANoCEdAq60D81n/UHV9lChoBkdAnDsmcz67/WgHTegDaAhHQKu3tiqhlDp1fZQoaAZHQJcxXfpD/l1oB03oA2gIR0CruEfgrH2idX2UKGgGR0CXiTNXo1UEaAdN6ANoCEdAq7oRhrnDBXV9lChoBkdAl3zZsKsuF2gHTegDaAhHQKu9B4vexfR1fZQoaAZHQJRavcFhXsBoB03oA2gIR0CrxL9tuUD/dX2UKGgGR0CXYdCfHxSYaAdN6ANoCEdAq8VZ88cMmXV9lChoBkdAl0L5HiFTN2gHTegDaAhHQKvHMT9sJpp1fZQoaAZHQJm9qT+vQnhoB03oA2gIR0CryiDsD4gzdX2UKGgGR0CdjWs1KoQ4aAdN6ANoCEdAq9TtvZRKpXV9lChoBkdAmugdVJcxCmgHTegDaAhHQKvVixVQyh11fZQoaAZHQJsZ/HuJDVpoB03oA2gIR0Cr107ZvkzXdX2UKGgGR0CawOFev6j4aAdN6ANoCEdAq9o9cQiA2HV9lChoBkdAnJZg9eQdS2gHTegDaAhHQKvhzq/ub7V1fZQoaAZHQJbUEXl8w6BoB03oA2gIR0Cr4mOFxn3+dX2UKGgGR0CZ9v4SYgJUaAdN6ANoCEdAq+Qu3WnTAnV9lChoBkdAmB/hDG96C2gHTegDaAhHQKvnWBT4tYl1fZQoaAZHQJm+sPoV2zRoB03oA2gIR0Cr8dNLL6k7dX2UKGgGR0CZPu7iQ1aXaAdN6ANoCEdAq/JnkLhJiHV9lChoBkdAm7CofGMn7mgHTegDaAhHQKv0Noakyk91fZQoaAZHQJrkvdM0xdpoB03oA2gIR0Cr9zkX+ERKdX2UKGgGR0Ca5C1pCa7VaAdN6ANoCEdAq/7mf9P1tnV9lChoBkdAnAYICU5dW2gHTegDaAhHQKv/ejFAE+x1fZQoaAZHQJt5B7HAAQxoB03oA2gIR0CsAT86/7BPdX2UKGgGR0CaZViuMdcTaAdN6ANoCEdArAT2kLx7RnV9lChoBkdAmSXMTSLIgmgHTegDaAhHQKwO/Zr56+p1fZQoaAZHQJiLa5BkZrJoB03oA2gIR0CsD5VwHZ9NdX2UKGgGR0CXzRJGe+VUaAdN6ANoCEdArBFfy5I6KnV9lChoBkdAlmulSS/0umgHTegDaAhHQKwUWpI+W4V1fZQoaAZHQJWD1u1ndwhoB03oA2gIR0CsG/FWfbsXdX2UKGgGR0CVr2FkhA4XaAdN6ANoCEdArByLCDVYp3V9lChoBkdAmAMl1r6+FmgHTegDaAhHQKwedS5y2hJ1fZQoaAZHQI7l73AVO9FoB03oA2gIR0CsIwPFWGRFdX2UKGgGR0CbrxHgP3BYaAdN6ANoCEdArCwR8YyftnV9lChoBkdAlFEwRsdkrmgHTegDaAhHQKwsqejEehh1fZQoaAZHQJeA9MTN+spoB03oA2gIR0CsLpGGucMFdX2UKGgGR0CaJK32mHgxaAdN6ANoCEdArDGSSaEzwnV9lChoBkdAmt9zqW1MNGgHTegDaAhHQKw5DKISDh91fZQoaAZHQJmWShwl0HRoB03oA2gIR0CsOaDgZTAGdX2UKGgGR0CW4yg8KXv6aAdN6ANoCEdArDvjSuyNXHV9lChoBkdAmCV0/SpiqmgHTegDaAhHQKxAc9hZyMl1fZQoaAZHQJyP9gOSW7hoB03oA2gIR0CsSNmYSg5BdX2UKGgGR0CRPfZ1FH8TaAdN6ANoCEdArEl1YyO7x3V9lChoBkdAnL+ZMYdhiWgHTegDaAhHQKxLSQiA2AJ1fZQoaAZHQJpdN+8XenBoB03oA2gIR0CsTjAMDwH8dX2UKGgGR0CcSyn9NvfkaAdN6ANoCEdArFXD+glF+nV9lChoBkdAlxeBWxQizWgHTegDaAhHQKxWbFTefqZ1fZQoaAZHQJwQ6ii7Ci1oB03oA2gIR0CsWTI+GGmDdX2UKGgGR0CQS2+EytV8aAdN6ANoCEdArF3LImw7knV9lChoBkdAm7lr2QGOdWgHTegDaAhHQKxloY1pCa91fZQoaAZHQJpJzr7fpEBoB03oA2gIR0CsZjMS9M9KdX2UKGgGR0CZ4/yMDOkdaAdN6ANoCEdArGgI3aSLZXV9lChoBkdAm4gVpCa7VmgHTegDaAhHQKxrKULUkOZ1fZQoaAZHQJq0xoxpL29oB03oA2gIR0CseNbJwKjSdX2UKGgGR0CZi12MbWEsaAdN6ANoCEdArHnO7pV0cXV9lChoBkdAm81vyXlbNmgHTegDaAhHQKx7wLfk3jx1fZQoaAZHQJtYQXbdrO9oB03oA2gIR0Csfq/vfCQ+dX2UKGgGR0CZCkHIIWxhaAdN6ANoCEdArIZgTbnHN3V9lChoBkdAnXiwJkXk52gHTegDaAhHQKyG84DLbHp1fZQoaAZHQJqV0dvKlpJoB03oA2gIR0CsiLAx8D0UdX2UKGgGR0CdacRQaaTfaAdN6ANoCEdArIuo1aW5Y3V9lChoBkdAm/EvFNtZWGgHTegDaAhHQKyWQS8rZrZ1fZQoaAZHQJjUcmXw9aFoB03oA2gIR0Cslto5xR2sdX2UKGgGR0CVlxytmtheaAdN6ANoCEdArJizuhK15XV9lChoBkdAjUKiVKPGQ2gHTegDaAhHQKybtgrpaA51fZQoaAZHQJx42UdJaq1oB03oA2gIR0Cso2UUfxMGdX2UKGgGR0CZy5bR4QjEaAdN6ANoCEdArKP85fdAPnV9lChoBkdAnZLsmOU+tGgHTegDaAhHQKyluGucME11fZQoaAZHQJ0S3Qtz0YloB03oA2gIR0CsqLRnnMdMdX2UKGgGR0CbTi59E1EWaAdN6ANoCEdArLNXGS6lL3V9lChoBkdAmmpjbi6xxGgHTegDaAhHQKyz7kWhysF1fZQoaAZHQJXY8pEx7AtoB03oA2gIR0CstbTNUwSKdX2UKGgGR0CbkgxFRYRvaAdN6ANoCEdArLikr5IpY3V9lChoBkdAkGll/DtPYWgHTegDaAhHQKzAd3jdYXB1fZQoaAZHQJnumEM9bHJoB03oA2gIR0CswQ3azu4PdX2UKGgGR0CUgF4uscQzaAdN6ANoCEdArMLdwiqyW3V9lChoBkdAmr641YQrc2gHTegDaAhHQKzF05PuXu51fZQoaAZHQIrEa1qnFYNoB03oA2gIR0Cs0IWSEDhcdX2UKGgGR0CbMu6ol2NeaAdN6ANoCEdArNEdDlYEGXV9lChoBkdAmB6PozN2T2gHTegDaAhHQKzS+VARkEt1fZQoaAZHQJULKG+K0lZoB03oA2gIR0Cs1eVy/9HddX2UKGgGR0CTzw+AmReUaAdN6ANoCEdArN11AmiQDHV9lChoBkdAj5+jnmq5smgHTegDaAhHQKzeCl9Brvd1fZQoaAZHQJW9/9AHE/BoB03oA2gIR0Cs39FOoHcDdX2UKGgGR0CZzkkyULUkaAdN6ANoCEdArOM/pKSPl3VlLg=="
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:920ba5bcce750f6f71cbcb602d667fa83bcfa75356ff3d684e5c3d00f7a0b1b3
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f4fd27f2bda62a37711206fdb4b26ae2e1973b4bfeafffe4f9e0993c042ecb3
|
3 |
size 56894
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4d27439900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4d27439990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4d27439a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4d27439ab0>", "_build": "<function ActorCriticPolicy._build at 0x7f4d27439b40>", "forward": "<function ActorCriticPolicy.forward at 0x7f4d27439bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4d27439c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4d27439cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4d27439d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4d27439e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4d27439ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4d27439f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4d273fa500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690971020134501860, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFi8nj9uVxm8T84GP+Z5zj++3MS/xBtQvyEVc7819ae/cKsxP7r53D+GoIE/pk+WP1SCWr+4aEe/5jv8Pil7uL+HLQDAW+ynPm7rAT+KBVVA4LRDP2zr3T8Uizu/koTbu7gLLz8MZcM+59kGP3/qXL9YEGw/YA9Tv0vY5b1xUVg/Zk8fv7ilt78Ltom/qDi0vq1AAcCka28+uM9yP8KB9r6w2Ka/KFsAQBhGNT4LnKa/rMHLv7BG0T+BawC/7zC0PTwnVb+2c8q/9tl7PwElMUBdMru/DGXDPufZBj9/6ly/mb6Uv5a9Xz57lBs/vis9vvBzlD/n3Ko/mzKtPo68rz6IYuK/e+YrP1TIy74sdww/33CLP6HDmj/5zAs/lIWjvmObgj/UZeM+ejEcP7ozVT26LP2+AzEDQGXuNL8yzEc/uAsvPwxlwz7n2QY/f+pcv6dnD7+PVUO+d+PePklWcD8FL46+5uF0P8+PgD2fpj6+safavR4mAj/dHYg8ADxgPpqy2j057Q+/tBMRP0GhVr1Tpwi+NIY+v28GBj/7Jus9vCuQP9OeJD/BGl6/vkRbvLgLLz8MZcM+59kGP3/qXL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADq8Yg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQ1+3vQAAAACDs+O/AAAAABL6mD0AAAAAJ7HkPwAAAAAPuQc+AAAAALAu4T8AAAAAS5PrPQAAAACuq+a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVyrwNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJZIjb0AAAAAWFEAwAAAAAA7BgU+AAAAAJrM6T8AAAAAUwKUvQAAAAAsveM/AAAAAAXwYD0AAAAAkMfivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOdumLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDuB309AAAAAKlX6L8AAAAAD+XVPQAAAADAYe4/AAAAABVp5b0AAAAA2Hr/PwAAAADjrrm8AAAAAH+0/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgibk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtA6uvQAAAABYAtu/AAAAAIjegD0AAAAA9Tn7PwAAAACskIA9AAAAABNs9D8AAAAAvt69vAAAAAApPfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJd6XUYsNDuMAWyUTegDjAF0lEdArDMSXD3ueHV9lChoBkdAlYXA+6iCa2gHTegDaAhHQKw0YUi6g/V1fZQoaAZHQJcnotAcDKZoB03oA2gIR0CsNwOskpqidX2UKGgGR0CVAZRjjJdTaAdN6ANoCEdArDnoIrvsq3V9lChoBkdAgomPDgqEvmgHTegDaAhHQKw+uqgh8pl1fZQoaAZHQJkor/T9bX9oB03oA2gIR0CsQA6X8fmtdX2UKGgGR0CZVLRw6ySnaAdN6ANoCEdArEODMA3kxXV9lChoBkdAl/2LrcCYC2gHTegDaAhHQKxH7clgMMJ1fZQoaAZHQJisofQrtmdoB03oA2gIR0CsTLm0NSZSdX2UKGgGR0CWdlqSHM2WaAdN6ANoCEdArE4XHaN+9nV9lChoBkdAl8q/1L8JlmgHTegDaAhHQKxQsrqdH2B1fZQoaAZHQJoNBCdBjWloB03oA2gIR0CsU7Ina37UdX2UKGgGR0CWMJtPHktFaAdN6ANoCEdArFhccwQDm3V9lChoBkdAm7Q/BvaURmgHTegDaAhHQKxZsIj4YaZ1fZQoaAZHQJnksYKpkwxoB03oA2gIR0CsXLIvBacJdX2UKGgGR0CZ+RmPHT7VaAdN6ANoCEdArGEkA7xNI3V9lChoBkdAl+t94/u9e2gHTegDaAhHQKxmMtPpIMB1fZQoaAZHQJSiQZUDMeRoB03oA2gIR0CsZ4UGeMAFdX2UKGgGR0CZAfvybx3FaAdN6ANoCEdArGookeIVM3V9lChoBkdAmTlK4UeuFGgHTegDaAhHQKxtCO9WZJF1fZQoaAZHQJPcYg0TDfpoB03oA2gIR0CscczakAPvdX2UKGgGR0CUdk3DvVmSaAdN6ANoCEdArHMhksjFAHV9lChoBkdAljxtl2/zrmgHTegDaAhHQKx11ziCJ411fZQoaAZHQIZH0OZssQNoB03oA2gIR0CseftBWxQjdX2UKGgGR0CUqQ9Tgl4UaAdN6ANoCEdArH/BVwPy1HV9lChoBkdAlEMThLoOhGgHTegDaAhHQKyBEf5DZ151fZQoaAZHQJWA/cFhXsBoB03oA2gIR0Csg6qFqSHNdX2UKGgGR0CRlTS2Yv38aAdN6ANoCEdArIaKauwHJXV9lChoBkdAmOETrqt5lmgHTegDaAhHQKyLPTrmhdt1fZQoaAZHQJWlYbMotthoB03oA2gIR0CsjIXg9/z8dX2UKGgGR0CYxxxCpm29aAdN6ANoCEdArI8mPPszEnV9lChoBkdAmBgFOXVslGgHTegDaAhHQKySkHfuTid1fZQoaAZHQJjTCwr1/UhoB03oA2gIR0CsmNwEhaC+dX2UKGgGR0CY87n9vS+haAdN6ANoCEdArJo5gE2YOXV9lChoBkdAlxQOiJwbVGgHTegDaAhHQKyc0skpqh11fZQoaAZHQJfAvYxtYSxoB03oA2gIR0Csn7s85jpcdX2UKGgGR0CW5QzZHuqnaAdN6ANoCEdArKRMit7rs3V9lChoBkdAliCXFglWwWgHTegDaAhHQKylm+qzZ6F1fZQoaAZHQI7Rjy6MBIZoB03oA2gIR0CsqDxjJ+2FdX2UKGgGR0CV911Fpfx+aAdN6ANoCEdArKsWCK77K3V9lChoBkdAjpaf9pAUtmgHTegDaAhHQKyyY87p3X91fZQoaAZHQJP22814xDdoB03oA2gIR0Css7BdUsFudX2UKGgGR0CZOKolUp/gaAdN6ANoCEdArLZJFVktmXV9lChoBkdAl7ukAPuogmgHTegDaAhHQKy5K6kqMFV1fZQoaAZHQJweNRceKbdoB03oA2gIR0Csvc/iPyTZdX2UKGgGR0CHc/WlMyrQaAdN6ANoCEdArL8srupjt3V9lChoBkdAl3tyOq//N2gHTegDaAhHQKzBxu7YkE91fZQoaAZHQJXz/xXnyNJoB03oA2gIR0CsxK1tfoicdX2UKGgGR0CXecIqslsxaAdN6ANoCEdArMrZUNrj53V9lChoBkdAlQyxysCDEmgHTegDaAhHQKzM5qxC6Yp1fZQoaAZHQJYEXV3EAHVoB03oA2gIR0Csz5oBRyfddX2UKGgGR0CMzRT7VJ+VaAdN6ANoCEdArNKD+BH09XV9lChoBkdAjZ13LeQ+2WgHTegDaAhHQKzXQpnYg7p1fZQoaAZHQIW2rfpD/l1oB03oA2gIR0Cs2JRjJ+2FdX2UKGgGR0CVNkdVNpM6aAdN6ANoCEdArNs3CqIacnV9lChoBkdAiBOJwS8J2WgHTegDaAhHQKzeIZ/kNnZ1fZQoaAZHQIZgqaRZED1oB03oA2gIR0Cs4+jPfKp2dX2UKGgGR0CITF0163RYaAdN6ANoCEdArOX5aC+UQnV9lChoBkdAhNCS9/SYxGgHTegDaAhHQKzpK4uK4x11fZQoaAZHQJRhJq46Oo5oB03oA2gIR0Cs7CEjHGS7dX2UKGgGR0CaGdpNbkfcaAdN6ANoCEdArPDUvAXVLHV9lChoBkdAlj/igsbvPWgHTegDaAhHQKzyKkKNQ0p1fZQoaAZHQJQmLUhFEzBoB03oA2gIR0Cs9ObhvR7adX2UKGgGR0CX0c+23KB/aAdN6ANoCEdArPfKhg3Lm3V9lChoBkdAlBbtPP9k0GgHTegDaAhHQKz88RjjJdV1fZQoaAZHQJIt4IqslsxoB03oA2gIR0Cs/t6asp5NdX2UKGgGR0CP07PgNwzdaAdN6ANoCEdArQKcPMB6r3V9lChoBkdAkbiJ9/jKgmgHTegDaAhHQK0FfYf4h2Z1fZQoaAZHQJQ2YDlo11poB03oA2gIR0CtCjOfdyksdX2UKGgGR0CSpwk4WDYiaAdN6ANoCEdArQuJbnoxH3V9lChoBkdAlBaWQOnVG2gHTegDaAhHQK0OIQYDT0B1fZQoaAZHQJgzL6P8yetoB03oA2gIR0CtEPFvZRKpdX2UKGgGR0CXN/RFI/Z/aAdN6ANoCEdArRWYWnCO3nV9lChoBkdAlhSK68QI2WgHTegDaAhHQK0XXDDTBqN1fZQoaAZHQJOCLRgJC0FoB03oA2gIR0CtG1gOz6acdX2UKGgGR0CM4LyCFsYVaAdN6ANoCEdArR6oXVLBbnV9lChoBkdAlTZ93wCr92gHTegDaAhHQK0jRWrfcet1fZQoaAZHQJOXPjU/fO5oB03oA2gIR0CtJI2Bz3h5dX2UKGgGR0CWhl6ZH/cWaAdN6ANoCEdArScyb4Ju23V9lChoBkdAlG6bfHggo2gHTegDaAhHQK0qa1stTUB1fZQoaAZHQJb8a2rn1WdoB03oA2gIR0CtLxuvdM0xdX2UKGgGR0CUo4DL8rI6aAdN6ANoCEdArTBuc6Nly3V9lChoBkdAlu8YYaYNRWgHTegDaAhHQK00YKVpsXV1fZQoaAZHQJZ08eDFqBVoB03oA2gIR0CtOCYy44IbdX2UKGgGR0CZUAP9kz42aAdN6ANoCEdArTzAEOiFkHV9lChoBkdAlKzxM36yjmgHTegDaAhHQK0+CaCtihF1fZQoaAZHQJbPgX531SRoB03oA2gIR0CtQKE2gnMMdX2UKGgGR0CZU7SGJvYOaAdN6ANoCEdArUODuWrwOXV9lChoBkdAmIkz94u9OGgHTegDaAhHQK1IJ/95yEN1fZQoaAZHQJAATUExIrhoB03oA2gIR0CtSXCr1dxAdX2UKGgGR0CXz+Q9ic5KaAdN6ANoCEdArUyfF98Z1nV9lChoBkdAlapGwJPZZmgHTegDaAhHQK1RFeBxxT91fZQoaAZHQJexlaxHG0hoB03oA2gIR0CtVdGqgh8qdX2UKGgGR0CU/pDYRNAUaAdN6ANoCEdArVcbLwF1S3V9lChoBkdAkhZbzGxUvWgHTegDaAhHQK1ZvoKUmlZ1fZQoaAZHQJQdBqSHM2ZoB03oA2gIR0CtXKFAmiQDdX2UKGgGR0CTRpJQtSQ6aAdN6ANoCEdArWE+n62v0XV9lChoBkdAlMUoYvWYnmgHTegDaAhHQK1iin0Cih51fZQoaAZHQJORUEyLyc1oB03oA2gIR0CtZZobfgrIdX2UKGgGR0CURajLSuyNaAdN6ANoCEdArWn978ejmHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7aeec050c550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7aeec050c5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7aeec050c670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7aeec050c700>", "_build": "<function ActorCriticPolicy._build at 0x7aeec050c790>", "forward": "<function ActorCriticPolicy.forward at 0x7aeec050c820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7aeec050c8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7aeec050c940>", "_predict": "<function ActorCriticPolicy._predict at 0x7aeec050c9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7aeec050ca60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7aeec050caf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7aeec050cb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7aeec0511cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691297479442851405, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFOQWT49NeY/A8N9v8EHsz9f4pC+5LTRPut8wT5YXq6+vFsnP2blDb9g/0g/sXdCvzMMPb/nMjE/7JoOv0poFz/L4X+/9QrLvVwMKj/dbhK/Z1Z3P/k/XL+B7Ju+2V7EP8Kmez+xChM/DvoNPx8Jgr9gRmE+xcPwP6Oilb8LFf4+kx4QPoNZK8AhI6A+E0XNvtsRQb+R0be/ecmnPrJDA0Dy3AQ+rKI9v3Q9Bz/4N22/ZSkLP3pTsL/j1Rw/FtZjv0lzb7zSMr0/RyCeO8N6IcA9NoK/Jtnev17M5r8fCYK/iNOCP95zNr5ABQE//faYP2dLhT4bpr0/bIyyPwONAL9zsyY/tzCmvq5jEEAEpmK/sD0WPV4nrT/eYNu/08lwP4i1gr4CLR0/YKxWP7DXdTwYrcK+5yZNv0mSSz53YXU+PTaCv7EKEz8O+g0/Ev57P+AukD8DDHS+5Db+PuVWHT9y4eI+wylOv89dnz86UZa/OeMnP91VXLyTLRRA49lTvwRcrr33ob4/wROXv7eXLz45IQI/ripSP32OVj+HasI/qA3vPwvnUL9k3oA/g00YQD02gr+xChM/DvoNPx8Jgr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABvKo42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+dqzvQAAAABKhOu/AAAAAKs/P7wAAAAAPLPzPwAAAAAqd5g9AAAAACPG3T8AAAAALw0EvQAAAABZEOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8O9WtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCpWBjwAAAAAW+fvvwAAAABoRRE9AAAAADCY+D8AAAAA6jf0vQAAAACnafo/AAAAAK9QhL0AAAAA9YT8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGKoaLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBQTNg9AAAAAB5j/r8AAAAA6yXfOgAAAAB56f4/AAAAADOswz0AAAAAhMT2PwAAAADMxvg8AAAAAJP63L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBaeA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAC9LcvQAAAADvGPm/AAAAAMFzgj0AAAAAWaDfPwAAAACRsFo9AAAAAL6W3T8AAAAAVw5zvQAAAAAHaei/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJAVZiobXH2MAWyUTegDjAF0lEdAq3xboyKvV3V9lChoBkdAlD2E7bL2YmgHTegDaAhHQKt9Xs54nnd1fZQoaAZHQJfLQxO+IuZoB03oA2gIR0Crf+vcBU70dX2UKGgGR0CZNHBVMmF8aAdN6ANoCEdAq4Lv557gKnV9lChoBkdAmBZ8JQcghmgHTegDaAhHQKuKxxhlUZN1fZQoaAZHQJVjhe4TbnJoB03oA2gIR0Cri2A4XGfgdX2UKGgGR0CVcWC3gDRuaAdN6ANoCEdAq40t1ZDArXV9lChoBkdAlNMq24NI9WgHTegDaAhHQKuQG7pV0cR1fZQoaAZHQJOkQWweNkxoB03oA2gIR0Crmmve54GEdX2UKGgGR0CaeGoW56MSaAdN6ANoCEdAq5tAkmhM8HV9lChoBkdAlqvymEXcg2gHTegDaAhHQKudEdWhh6V1fZQoaAZHQIhmk6tDD0loB03oA2gIR0Crn+66reZYdX2UKGgGR0CU6yJ/5LyuaAdN6ANoCEdAq6eg9Pk7wXV9lChoBkdAlLmTK1XvIGgHTegDaAhHQKuoOXVsk6d1fZQoaAZHQJc7COU+s5poB03oA2gIR0CrqgtQKrq/dX2UKGgGR0CYfQha1TisaAdN6ANoCEdAq60D81n/UHV9lChoBkdAnDsmcz67/WgHTegDaAhHQKu3tiqhlDp1fZQoaAZHQJcxXfpD/l1oB03oA2gIR0CruEfgrH2idX2UKGgGR0CXiTNXo1UEaAdN6ANoCEdAq7oRhrnDBXV9lChoBkdAl3zZsKsuF2gHTegDaAhHQKu9B4vexfR1fZQoaAZHQJRavcFhXsBoB03oA2gIR0CrxL9tuUD/dX2UKGgGR0CXYdCfHxSYaAdN6ANoCEdAq8VZ88cMmXV9lChoBkdAl0L5HiFTN2gHTegDaAhHQKvHMT9sJpp1fZQoaAZHQJm9qT+vQnhoB03oA2gIR0CryiDsD4gzdX2UKGgGR0CdjWs1KoQ4aAdN6ANoCEdAq9TtvZRKpXV9lChoBkdAmugdVJcxCmgHTegDaAhHQKvVixVQyh11fZQoaAZHQJsZ/HuJDVpoB03oA2gIR0Cr107ZvkzXdX2UKGgGR0CawOFev6j4aAdN6ANoCEdAq9o9cQiA2HV9lChoBkdAnJZg9eQdS2gHTegDaAhHQKvhzq/ub7V1fZQoaAZHQJbUEXl8w6BoB03oA2gIR0Cr4mOFxn3+dX2UKGgGR0CZ9v4SYgJUaAdN6ANoCEdAq+Qu3WnTAnV9lChoBkdAmB/hDG96C2gHTegDaAhHQKvnWBT4tYl1fZQoaAZHQJm+sPoV2zRoB03oA2gIR0Cr8dNLL6k7dX2UKGgGR0CZPu7iQ1aXaAdN6ANoCEdAq/JnkLhJiHV9lChoBkdAm7CofGMn7mgHTegDaAhHQKv0Noakyk91fZQoaAZHQJrkvdM0xdpoB03oA2gIR0Cr9zkX+ERKdX2UKGgGR0Ca5C1pCa7VaAdN6ANoCEdAq/7mf9P1tnV9lChoBkdAnAYICU5dW2gHTegDaAhHQKv/ejFAE+x1fZQoaAZHQJt5B7HAAQxoB03oA2gIR0CsAT86/7BPdX2UKGgGR0CaZViuMdcTaAdN6ANoCEdArAT2kLx7RnV9lChoBkdAmSXMTSLIgmgHTegDaAhHQKwO/Zr56+p1fZQoaAZHQJiLa5BkZrJoB03oA2gIR0CsD5VwHZ9NdX2UKGgGR0CXzRJGe+VUaAdN6ANoCEdArBFfy5I6KnV9lChoBkdAlmulSS/0umgHTegDaAhHQKwUWpI+W4V1fZQoaAZHQJWD1u1ndwhoB03oA2gIR0CsG/FWfbsXdX2UKGgGR0CVr2FkhA4XaAdN6ANoCEdArByLCDVYp3V9lChoBkdAmAMl1r6+FmgHTegDaAhHQKwedS5y2hJ1fZQoaAZHQI7l73AVO9FoB03oA2gIR0CsIwPFWGRFdX2UKGgGR0CbrxHgP3BYaAdN6ANoCEdArCwR8YyftnV9lChoBkdAlFEwRsdkrmgHTegDaAhHQKwsqejEehh1fZQoaAZHQJeA9MTN+spoB03oA2gIR0CsLpGGucMFdX2UKGgGR0CaJK32mHgxaAdN6ANoCEdArDGSSaEzwnV9lChoBkdAmt9zqW1MNGgHTegDaAhHQKw5DKISDh91fZQoaAZHQJmWShwl0HRoB03oA2gIR0CsOaDgZTAGdX2UKGgGR0CW4yg8KXv6aAdN6ANoCEdArDvjSuyNXHV9lChoBkdAmCV0/SpiqmgHTegDaAhHQKxAc9hZyMl1fZQoaAZHQJyP9gOSW7hoB03oA2gIR0CsSNmYSg5BdX2UKGgGR0CRPfZ1FH8TaAdN6ANoCEdArEl1YyO7x3V9lChoBkdAnL+ZMYdhiWgHTegDaAhHQKxLSQiA2AJ1fZQoaAZHQJpdN+8XenBoB03oA2gIR0CsTjAMDwH8dX2UKGgGR0CcSyn9NvfkaAdN6ANoCEdArFXD+glF+nV9lChoBkdAlxeBWxQizWgHTegDaAhHQKxWbFTefqZ1fZQoaAZHQJwQ6ii7Ci1oB03oA2gIR0CsWTI+GGmDdX2UKGgGR0CQS2+EytV8aAdN6ANoCEdArF3LImw7knV9lChoBkdAm7lr2QGOdWgHTegDaAhHQKxloY1pCa91fZQoaAZHQJpJzr7fpEBoB03oA2gIR0CsZjMS9M9KdX2UKGgGR0CZ4/yMDOkdaAdN6ANoCEdArGgI3aSLZXV9lChoBkdAm4gVpCa7VmgHTegDaAhHQKxrKULUkOZ1fZQoaAZHQJq0xoxpL29oB03oA2gIR0CseNbJwKjSdX2UKGgGR0CZi12MbWEsaAdN6ANoCEdArHnO7pV0cXV9lChoBkdAm81vyXlbNmgHTegDaAhHQKx7wLfk3jx1fZQoaAZHQJtYQXbdrO9oB03oA2gIR0Csfq/vfCQ+dX2UKGgGR0CZCkHIIWxhaAdN6ANoCEdArIZgTbnHN3V9lChoBkdAnXiwJkXk52gHTegDaAhHQKyG84DLbHp1fZQoaAZHQJqV0dvKlpJoB03oA2gIR0CsiLAx8D0UdX2UKGgGR0CdacRQaaTfaAdN6ANoCEdArIuo1aW5Y3V9lChoBkdAm/EvFNtZWGgHTegDaAhHQKyWQS8rZrZ1fZQoaAZHQJjUcmXw9aFoB03oA2gIR0Cslto5xR2sdX2UKGgGR0CVlxytmtheaAdN6ANoCEdArJizuhK15XV9lChoBkdAjUKiVKPGQ2gHTegDaAhHQKybtgrpaA51fZQoaAZHQJx42UdJaq1oB03oA2gIR0Cso2UUfxMGdX2UKGgGR0CZy5bR4QjEaAdN6ANoCEdArKP85fdAPnV9lChoBkdAnZLsmOU+tGgHTegDaAhHQKyluGucME11fZQoaAZHQJ0S3Qtz0YloB03oA2gIR0CsqLRnnMdMdX2UKGgGR0CbTi59E1EWaAdN6ANoCEdArLNXGS6lL3V9lChoBkdAmmpjbi6xxGgHTegDaAhHQKyz7kWhysF1fZQoaAZHQJXY8pEx7AtoB03oA2gIR0CstbTNUwSKdX2UKGgGR0CbkgxFRYRvaAdN6ANoCEdArLikr5IpY3V9lChoBkdAkGll/DtPYWgHTegDaAhHQKzAd3jdYXB1fZQoaAZHQJnumEM9bHJoB03oA2gIR0CswQ3azu4PdX2UKGgGR0CUgF4uscQzaAdN6ANoCEdArMLdwiqyW3V9lChoBkdAmr641YQrc2gHTegDaAhHQKzF05PuXu51fZQoaAZHQIrEa1qnFYNoB03oA2gIR0Cs0IWSEDhcdX2UKGgGR0CbMu6ol2NeaAdN6ANoCEdArNEdDlYEGXV9lChoBkdAmB6PozN2T2gHTegDaAhHQKzS+VARkEt1fZQoaAZHQJULKG+K0lZoB03oA2gIR0Cs1eVy/9HddX2UKGgGR0CTzw+AmReUaAdN6ANoCEdArN11AmiQDHV9lChoBkdAj5+jnmq5smgHTegDaAhHQKzeCl9Brvd1fZQoaAZHQJW9/9AHE/BoB03oA2gIR0Cs39FOoHcDdX2UKGgGR0CZzkkyULUkaAdN6ANoCEdArOM/pKSPl3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:910e508fde87407610653409a6c62e2fa208f77eac0c3ee91dd7aafb5c1e28d0
|
3 |
+
size 1110183
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1565.7056809740375, "std_reward": 269.6180656695814, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-06T05:53:47.922628"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2176
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe8759679e8356496b84b26f449c7585a7254b1f0c052f4d910124b3376cbdeb
|
3 |
size 2176
|