cgus
/

Text Generation
English
Chinese
qwen2
medical
conversational
4-bit precision
exl2
File size: 4,209 Bytes
c9308f0
 
 
 
 
 
 
 
 
ac0d189
c9308f0
 
 
 
ac0d189
 
 
 
 
 
 
 
 
c9308f0
ac0d189
 
 
 
 
 
 
c9308f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: apache-2.0
datasets:
- FreedomIntelligence/medical-o1-reasoning-SFT
- FreedomIntelligence/medical-o1-verifiable-problem
language:
- en
- zh
base_model:
- FreedomIntelligence/HuatuoGPT-o1-7B
pipeline_tag: text-generation
tags:
- medical
---
# HuatuoGPT-o1-7B-exl2
Original model: [HuatuoGPT-o1-7B](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) made by [FreedomIntelligence](https://huggingface.co/FreedomIntelligence)  
Based on: [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) by [Qwen](https://huggingface.co/Qwen)  
## Quants
[4bpw h6 (main)](https://huggingface.co/cgus/HuatuoGPT-o1-7B-exl2/tree/main)  
[4.5bpw h6](https://huggingface.co/cgus/HuatuoGPT-o1-7B-exl2/tree/4.5bpw-h6)  
[5bpw h6](https://huggingface.co/cgus/HuatuoGPT-o1-7B-exl2/tree/5bpw-h6)  
[6bpw h6](https://huggingface.co/cgus/HuatuoGPT-o1-7B-exl2/tree/6bpw-h6)  
[8bpw h8](https://huggingface.co/cgus/HuatuoGPT-o1-7B-exl2/tree/8bpw-h8)  

## Quantization notes
Made with Exllamav2 0.2.7 with default dataset.  
Exl2 quants require Nvidia RTX on Windows or Nvidia RTX/AMD ROCm on Linux.  
Model has to fully fit GPU as RAM offloading isn't supported natively.  
It can be used with apps such as TabbyAPI, Text-Generation-WebUI, LoLLMs and others.

# Original model card
<div align="center">
<h1>
  HuatuoGPT-o1-7B
</h1>
</div>

<div align="center">
<a href="https://github.com/FreedomIntelligence/HuatuoGPT-o1" target="_blank">GitHub</a> | <a href="https://arxiv.org/pdf/2412.18925" target="_blank">Paper</a>
</div>

# <span>Introduction</span>
**HuatuoGPT-o1** is a medical LLM designed for advanced medical reasoning.  It generates a complex thought process, reflecting and refining its reasoning, before providing a final response. 

For more information, visit our GitHub repository: 
[https://github.com/FreedomIntelligence/HuatuoGPT-o1](https://github.com/FreedomIntelligence/HuatuoGPT-o1).

# <span>Model Info</span>
|                      | Backbone     | Supported Languages | Link                                                                  |
| -------------------- | ------------ | ----- | --------------------------------------------------------------------- |
| **HuatuoGPT-o1-8B**  | LLaMA-3.1-8B  | English    | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) |
| **HuatuoGPT-o1-70B** | LLaMA-3.1-70B | English    | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-70B) |
| **HuatuoGPT-o1-7B**  | Qwen2.5-7B   | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) |
| **HuatuoGPT-o1-72B** | Qwen2.5-72B  | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-72B) |



# <span>Usage</span>
You can use HuatuoGPT-o1-7B in the same way as `Qwen2.5-7B-Instruct`. You can deploy it with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang),  or perform direct inference:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-7B",torch_dtype="auto",device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-7B")

input_text = "How to stop a cough?"
messages = [{"role": "user", "content": input_text}]

inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True
), return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=2048)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

HuatuoGPT-o1 adopts a *thinks-before-it-answers* approach, with outputs formatted as:

```
## Thinking
[Reasoning process]

## Final Response
[Output]
```

# <span>📖 Citation</span>
```
@misc{chen2024huatuogpto1medicalcomplexreasoning,
      title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs}, 
      author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang},
      year={2024},
      eprint={2412.18925},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2412.18925}, 
}
```