cbpuschmann commited on
Commit
bbef17a
·
verified ·
1 Parent(s): 2b992cb

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,723 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: '"Die jungen Klimaaktivisten haben mit ihren Protestaktionen und Straßenblockaden
9
+ ein dringend benötigtes Gespräch über die Notwendigkeit von sofortigem Handeln
10
+ im Kampf gegen den Klimawandel angestoßen."'
11
+ - text: Die Bundesregierung plant, den Einsatz von Wärmepumpen durch ein neues Heizungsgesetz
12
+ zu fördern, was laut Experten einen wichtigen Schritt zur Erreichung der Klimaziele
13
+ darstellen könnte.
14
+ - text: ' "Das Heizungsgesetz ist nichts weiter als ein weiterer Schritt in Richtung
15
+ eines grünen Diktats, das die Bürger in die Kälte schickt."'
16
+ - text: ' Die Klima-Aktivisten von Fridays for Future und der Letzten Generation haben
17
+ heute in mehreren Städten Proteste organisiert, um auf den Klimawandel aufmerksam
18
+ zu machen.'
19
+ - text: ' "Die Diskussion über ein Tempolimit auf Autobahnen spaltet die Gemüter,
20
+ während Experten auf die potenziellen Vorteile für die Verkehrssicherheit und
21
+ den Klimaschutz hinweisen."'
22
+ metrics:
23
+ - accuracy
24
+ pipeline_tag: text-classification
25
+ library_name: setfit
26
+ inference: true
27
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
28
+ model-index:
29
+ - name: SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
30
+ results:
31
+ - task:
32
+ type: text-classification
33
+ name: Text Classification
34
+ dataset:
35
+ name: Unknown
36
+ type: unknown
37
+ split: test
38
+ metrics:
39
+ - type: accuracy
40
+ value: 0.953405017921147
41
+ name: Accuracy
42
+ ---
43
+
44
+ # SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
45
+
46
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
47
+
48
+ The model has been trained using an efficient few-shot learning technique that involves:
49
+
50
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
51
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
52
+
53
+ ## Model Details
54
+
55
+ ### Model Description
56
+ - **Model Type:** SetFit
57
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
58
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
59
+ - **Maximum Sequence Length:** 128 tokens
60
+ - **Number of Classes:** 3 classes
61
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
62
+ <!-- - **Language:** Unknown -->
63
+ <!-- - **License:** Unknown -->
64
+
65
+ ### Model Sources
66
+
67
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
68
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
69
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
70
+
71
+ ### Model Labels
72
+ | Label | Examples |
73
+ |:-----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
74
+ | neutral | <ul><li>'Die Bundesregierung plant, bis 2024 ein sogenanntes Heizungsgesetz vorzulegen, das unter anderem eine flächendeckende Nutzung von Wärmepumpen als Teil eines umfassenden Plans zur Reduzierung der Treibhausgasemissionen im Gebäudesektor vorsehen soll.'</li><li>'"Die Bundesregierung plant, die Einführung von Wärmepumpen für Neubauten und den Austausch alter Heizungsanlagen in Bestandsgebäuden durch ein Gesetz zu forcieren, während Kritiker warnen, dass die Maßnahmen die Belastung für private Haushalte und Unternehmen erhöhen könnten."'</li><li>' Die Diskussion über ein nationales Tempolimit auf Autobahnen spaltet die Gemüter, während Experten die potenziellen Vorteile und Nachteile abwägen.'</li></ul> |
75
+ | opposed | <ul><li>'"Millionen von Hausbesitzern sollen zu unfreiwilligen Versuchskaninchen für die teuren und unzuverlässlichen Wärmepumpen werden, ohne dass es auch nur einen Hauch von echter Wahlmöglichkeit gibt."'</li><li>'"Die von den Grünen und Linken geträumte Tempodiktatur auf unseren Autobahnen ist nichts als ein weiterer Schritt in Richtung einer überbürokratisierten, unfreien Gesellschaft."'</li><li>'"Die geplanten Vorschriften würden vielen Familien den Traum vom Eigenheim in weite Ferne rücken, da die Kosten für die Installation einer Wärmepumpe oft ein Vielfaches dessen betragen, was ein durchschnittlicher Haushalt in einem Jahr für Heizkosten ausgibt."'</li></ul> |
76
+ | supportive | <ul><li>'Die Bundesregierung hat mit dem Heizungsgesetz einen wichtigen Schritt in Richtung Klimaneutralität gemacht, indem sie die Verpflichtung zur Nutzung erneuerbarer Wärmequellen bei Neubauten festlegt.'</li><li>'"Ein Tempolimit auf Autobahnen könnte nicht nur die Umweltbelastung verringern, sondern auch die Zahl der Verkehrsunfälle reduzieren und somit Menschenleben retten."'</li><li>' Eine nationale Geschwindigkeitsbegrenzung auf Autobahnen könnte nicht nur die Unfallzahlen senken, sondern auch einen wichtigen Beitrag zum Klimaschutz leisten.'</li></ul> |
77
+
78
+ ## Evaluation
79
+
80
+ ### Metrics
81
+ | Label | Accuracy |
82
+ |:--------|:---------|
83
+ | **all** | 0.9534 |
84
+
85
+ ## Uses
86
+
87
+ ### Direct Use for Inference
88
+
89
+ First install the SetFit library:
90
+
91
+ ```bash
92
+ pip install setfit
93
+ ```
94
+
95
+ Then you can load this model and run inference.
96
+
97
+ ```python
98
+ from setfit import SetFitModel
99
+
100
+ # Download from the 🤗 Hub
101
+ model = SetFitModel.from_pretrained("cbpuschmann/paraphrase-multilingual-mpnet-klimacoder_v0.8")
102
+ # Run inference
103
+ preds = model(" \"Das Heizungsgesetz ist nichts weiter als ein weiterer Schritt in Richtung eines grünen Diktats, das die Bürger in die Kälte schickt.\"")
104
+ ```
105
+
106
+ <!--
107
+ ### Downstream Use
108
+
109
+ *List how someone could finetune this model on their own dataset.*
110
+ -->
111
+
112
+ <!--
113
+ ### Out-of-Scope Use
114
+
115
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
116
+ -->
117
+
118
+ <!--
119
+ ## Bias, Risks and Limitations
120
+
121
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
122
+ -->
123
+
124
+ <!--
125
+ ### Recommendations
126
+
127
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
128
+ -->
129
+
130
+ ## Training Details
131
+
132
+ ### Training Set Metrics
133
+ | Training set | Min | Median | Max |
134
+ |:-------------|:----|:--------|:----|
135
+ | Word count | 10 | 25.6541 | 57 |
136
+
137
+ | Label | Training Sample Count |
138
+ |:-----------|:----------------------|
139
+ | neutral | 321 |
140
+ | opposed | 391 |
141
+ | supportive | 404 |
142
+
143
+ ### Training Hyperparameters
144
+ - batch_size: (32, 32)
145
+ - num_epochs: (1, 1)
146
+ - max_steps: -1
147
+ - sampling_strategy: oversampling
148
+ - body_learning_rate: (2e-05, 1e-05)
149
+ - head_learning_rate: 0.01
150
+ - loss: CosineSimilarityLoss
151
+ - distance_metric: cosine_distance
152
+ - margin: 0.25
153
+ - end_to_end: False
154
+ - use_amp: False
155
+ - warmup_proportion: 0.1
156
+ - l2_weight: 0.01
157
+ - seed: 42
158
+ - eval_max_steps: -1
159
+ - load_best_model_at_end: False
160
+
161
+ ### Training Results
162
+ | Epoch | Step | Training Loss | Validation Loss |
163
+ |:------:|:-----:|:-------------:|:---------------:|
164
+ | 0.0000 | 1 | 0.1985 | - |
165
+ | 0.0019 | 50 | 0.2445 | - |
166
+ | 0.0039 | 100 | 0.2321 | - |
167
+ | 0.0058 | 150 | 0.2012 | - |
168
+ | 0.0077 | 200 | 0.1614 | - |
169
+ | 0.0097 | 250 | 0.1188 | - |
170
+ | 0.0116 | 300 | 0.0849 | - |
171
+ | 0.0136 | 350 | 0.0563 | - |
172
+ | 0.0155 | 400 | 0.0374 | - |
173
+ | 0.0174 | 450 | 0.0216 | - |
174
+ | 0.0194 | 500 | 0.0144 | - |
175
+ | 0.0213 | 550 | 0.0099 | - |
176
+ | 0.0232 | 600 | 0.0061 | - |
177
+ | 0.0252 | 650 | 0.007 | - |
178
+ | 0.0271 | 700 | 0.0026 | - |
179
+ | 0.0290 | 750 | 0.0017 | - |
180
+ | 0.0310 | 800 | 0.0012 | - |
181
+ | 0.0329 | 850 | 0.0014 | - |
182
+ | 0.0349 | 900 | 0.002 | - |
183
+ | 0.0368 | 950 | 0.0008 | - |
184
+ | 0.0387 | 1000 | 0.0009 | - |
185
+ | 0.0407 | 1050 | 0.0003 | - |
186
+ | 0.0426 | 1100 | 0.0007 | - |
187
+ | 0.0445 | 1150 | 0.0008 | - |
188
+ | 0.0465 | 1200 | 0.0006 | - |
189
+ | 0.0484 | 1250 | 0.0002 | - |
190
+ | 0.0503 | 1300 | 0.0001 | - |
191
+ | 0.0523 | 1350 | 0.0001 | - |
192
+ | 0.0542 | 1400 | 0.0001 | - |
193
+ | 0.0562 | 1450 | 0.0001 | - |
194
+ | 0.0581 | 1500 | 0.0007 | - |
195
+ | 0.0600 | 1550 | 0.0005 | - |
196
+ | 0.0620 | 1600 | 0.0007 | - |
197
+ | 0.0639 | 1650 | 0.0012 | - |
198
+ | 0.0658 | 1700 | 0.0007 | - |
199
+ | 0.0678 | 1750 | 0.0038 | - |
200
+ | 0.0697 | 1800 | 0.0018 | - |
201
+ | 0.0716 | 1850 | 0.0049 | - |
202
+ | 0.0736 | 1900 | 0.0061 | - |
203
+ | 0.0755 | 1950 | 0.0038 | - |
204
+ | 0.0775 | 2000 | 0.0037 | - |
205
+ | 0.0794 | 2050 | 0.0006 | - |
206
+ | 0.0813 | 2100 | 0.0001 | - |
207
+ | 0.0833 | 2150 | 0.0 | - |
208
+ | 0.0852 | 2200 | 0.0 | - |
209
+ | 0.0871 | 2250 | 0.0 | - |
210
+ | 0.0891 | 2300 | 0.0 | - |
211
+ | 0.0910 | 2350 | 0.0 | - |
212
+ | 0.0929 | 2400 | 0.0 | - |
213
+ | 0.0949 | 2450 | 0.0 | - |
214
+ | 0.0968 | 2500 | 0.0 | - |
215
+ | 0.0987 | 2550 | 0.0 | - |
216
+ | 0.1007 | 2600 | 0.0 | - |
217
+ | 0.1026 | 2650 | 0.0 | - |
218
+ | 0.1046 | 2700 | 0.0 | - |
219
+ | 0.1065 | 2750 | 0.0 | - |
220
+ | 0.1084 | 2800 | 0.0 | - |
221
+ | 0.1104 | 2850 | 0.0 | - |
222
+ | 0.1123 | 2900 | 0.0 | - |
223
+ | 0.1142 | 2950 | 0.0 | - |
224
+ | 0.1162 | 3000 | 0.0 | - |
225
+ | 0.1181 | 3050 | 0.0 | - |
226
+ | 0.1200 | 3100 | 0.0 | - |
227
+ | 0.1220 | 3150 | 0.0 | - |
228
+ | 0.1239 | 3200 | 0.0 | - |
229
+ | 0.1259 | 3250 | 0.0 | - |
230
+ | 0.1278 | 3300 | 0.0 | - |
231
+ | 0.1297 | 3350 | 0.0 | - |
232
+ | 0.1317 | 3400 | 0.0 | - |
233
+ | 0.1336 | 3450 | 0.0 | - |
234
+ | 0.1355 | 3500 | 0.0 | - |
235
+ | 0.1375 | 3550 | 0.0 | - |
236
+ | 0.1394 | 3600 | 0.0 | - |
237
+ | 0.1413 | 3650 | 0.0 | - |
238
+ | 0.1433 | 3700 | 0.0 | - |
239
+ | 0.1452 | 3750 | 0.0 | - |
240
+ | 0.1472 | 3800 | 0.0 | - |
241
+ | 0.1491 | 3850 | 0.0 | - |
242
+ | 0.1510 | 3900 | 0.0 | - |
243
+ | 0.1530 | 3950 | 0.0 | - |
244
+ | 0.1549 | 4000 | 0.0 | - |
245
+ | 0.1568 | 4050 | 0.0 | - |
246
+ | 0.1588 | 4100 | 0.0 | - |
247
+ | 0.1607 | 4150 | 0.0 | - |
248
+ | 0.1626 | 4200 | 0.0 | - |
249
+ | 0.1646 | 4250 | 0.0 | - |
250
+ | 0.1665 | 4300 | 0.0 | - |
251
+ | 0.1685 | 4350 | 0.0 | - |
252
+ | 0.1704 | 4400 | 0.0 | - |
253
+ | 0.1723 | 4450 | 0.0 | - |
254
+ | 0.1743 | 4500 | 0.0 | - |
255
+ | 0.1762 | 4550 | 0.0 | - |
256
+ | 0.1781 | 4600 | 0.0 | - |
257
+ | 0.1801 | 4650 | 0.0 | - |
258
+ | 0.1820 | 4700 | 0.0 | - |
259
+ | 0.1839 | 4750 | 0.0 | - |
260
+ | 0.1859 | 4800 | 0.0 | - |
261
+ | 0.1878 | 4850 | 0.0 | - |
262
+ | 0.1898 | 4900 | 0.0 | - |
263
+ | 0.1917 | 4950 | 0.0 | - |
264
+ | 0.1936 | 5000 | 0.0 | - |
265
+ | 0.1956 | 5050 | 0.0 | - |
266
+ | 0.1975 | 5100 | 0.0 | - |
267
+ | 0.1994 | 5150 | 0.0 | - |
268
+ | 0.2014 | 5200 | 0.0 | - |
269
+ | 0.2033 | 5250 | 0.0 | - |
270
+ | 0.2052 | 5300 | 0.0 | - |
271
+ | 0.2072 | 5350 | 0.0 | - |
272
+ | 0.2091 | 5400 | 0.0 | - |
273
+ | 0.2111 | 5450 | 0.0 | - |
274
+ | 0.2130 | 5500 | 0.0 | - |
275
+ | 0.2149 | 5550 | 0.0 | - |
276
+ | 0.2169 | 5600 | 0.0 | - |
277
+ | 0.2188 | 5650 | 0.0 | - |
278
+ | 0.2207 | 5700 | 0.0 | - |
279
+ | 0.2227 | 5750 | 0.0 | - |
280
+ | 0.2246 | 5800 | 0.0 | - |
281
+ | 0.2265 | 5850 | 0.0 | - |
282
+ | 0.2285 | 5900 | 0.0 | - |
283
+ | 0.2304 | 5950 | 0.0 | - |
284
+ | 0.2324 | 6000 | 0.0 | - |
285
+ | 0.2343 | 6050 | 0.0 | - |
286
+ | 0.2362 | 6100 | 0.0 | - |
287
+ | 0.2382 | 6150 | 0.0 | - |
288
+ | 0.2401 | 6200 | 0.0 | - |
289
+ | 0.2420 | 6250 | 0.0 | - |
290
+ | 0.2440 | 6300 | 0.0 | - |
291
+ | 0.2459 | 6350 | 0.0 | - |
292
+ | 0.2478 | 6400 | 0.0 | - |
293
+ | 0.2498 | 6450 | 0.0 | - |
294
+ | 0.2517 | 6500 | 0.0 | - |
295
+ | 0.2536 | 6550 | 0.0 | - |
296
+ | 0.2556 | 6600 | 0.0 | - |
297
+ | 0.2575 | 6650 | 0.0 | - |
298
+ | 0.2595 | 6700 | 0.0 | - |
299
+ | 0.2614 | 6750 | 0.0 | - |
300
+ | 0.2633 | 6800 | 0.0 | - |
301
+ | 0.2653 | 6850 | 0.0 | - |
302
+ | 0.2672 | 6900 | 0.0 | - |
303
+ | 0.2691 | 6950 | 0.0 | - |
304
+ | 0.2711 | 7000 | 0.0 | - |
305
+ | 0.2730 | 7050 | 0.0 | - |
306
+ | 0.2749 | 7100 | 0.0 | - |
307
+ | 0.2769 | 7150 | 0.0 | - |
308
+ | 0.2788 | 7200 | 0.0 | - |
309
+ | 0.2808 | 7250 | 0.0 | - |
310
+ | 0.2827 | 7300 | 0.0 | - |
311
+ | 0.2846 | 7350 | 0.0 | - |
312
+ | 0.2866 | 7400 | 0.0 | - |
313
+ | 0.2885 | 7450 | 0.0 | - |
314
+ | 0.2904 | 7500 | 0.0 | - |
315
+ | 0.2924 | 7550 | 0.0 | - |
316
+ | 0.2943 | 7600 | 0.0 | - |
317
+ | 0.2962 | 7650 | 0.0 | - |
318
+ | 0.2982 | 7700 | 0.0 | - |
319
+ | 0.3001 | 7750 | 0.0 | - |
320
+ | 0.3021 | 7800 | 0.0 | - |
321
+ | 0.3040 | 7850 | 0.0 | - |
322
+ | 0.3059 | 7900 | 0.0 | - |
323
+ | 0.3079 | 7950 | 0.0 | - |
324
+ | 0.3098 | 8000 | 0.0 | - |
325
+ | 0.3117 | 8050 | 0.0 | - |
326
+ | 0.3137 | 8100 | 0.0 | - |
327
+ | 0.3156 | 8150 | 0.0 | - |
328
+ | 0.3175 | 8200 | 0.0 | - |
329
+ | 0.3195 | 8250 | 0.0 | - |
330
+ | 0.3214 | 8300 | 0.0 | - |
331
+ | 0.3234 | 8350 | 0.0 | - |
332
+ | 0.3253 | 8400 | 0.0 | - |
333
+ | 0.3272 | 8450 | 0.0 | - |
334
+ | 0.3292 | 8500 | 0.0 | - |
335
+ | 0.3311 | 8550 | 0.0 | - |
336
+ | 0.3330 | 8600 | 0.0 | - |
337
+ | 0.3350 | 8650 | 0.0 | - |
338
+ | 0.3369 | 8700 | 0.0 | - |
339
+ | 0.3388 | 8750 | 0.0 | - |
340
+ | 0.3408 | 8800 | 0.0 | - |
341
+ | 0.3427 | 8850 | 0.0 | - |
342
+ | 0.3447 | 8900 | 0.0 | - |
343
+ | 0.3466 | 8950 | 0.0 | - |
344
+ | 0.3485 | 9000 | 0.0 | - |
345
+ | 0.3505 | 9050 | 0.0 | - |
346
+ | 0.3524 | 9100 | 0.0 | - |
347
+ | 0.3543 | 9150 | 0.0 | - |
348
+ | 0.3563 | 9200 | 0.0 | - |
349
+ | 0.3582 | 9250 | 0.0 | - |
350
+ | 0.3601 | 9300 | 0.0 | - |
351
+ | 0.3621 | 9350 | 0.0 | - |
352
+ | 0.3640 | 9400 | 0.0 | - |
353
+ | 0.3660 | 9450 | 0.0 | - |
354
+ | 0.3679 | 9500 | 0.0 | - |
355
+ | 0.3698 | 9550 | 0.0 | - |
356
+ | 0.3718 | 9600 | 0.0 | - |
357
+ | 0.3737 | 9650 | 0.0 | - |
358
+ | 0.3756 | 9700 | 0.0 | - |
359
+ | 0.3776 | 9750 | 0.0 | - |
360
+ | 0.3795 | 9800 | 0.0 | - |
361
+ | 0.3814 | 9850 | 0.0 | - |
362
+ | 0.3834 | 9900 | 0.0 | - |
363
+ | 0.3853 | 9950 | 0.0 | - |
364
+ | 0.3873 | 10000 | 0.0 | - |
365
+ | 0.3892 | 10050 | 0.0 | - |
366
+ | 0.3911 | 10100 | 0.0 | - |
367
+ | 0.3931 | 10150 | 0.0 | - |
368
+ | 0.3950 | 10200 | 0.0 | - |
369
+ | 0.3969 | 10250 | 0.0 | - |
370
+ | 0.3989 | 10300 | 0.0 | - |
371
+ | 0.4008 | 10350 | 0.0 | - |
372
+ | 0.4027 | 10400 | 0.0 | - |
373
+ | 0.4047 | 10450 | 0.0 | - |
374
+ | 0.4066 | 10500 | 0.0 | - |
375
+ | 0.4086 | 10550 | 0.0 | - |
376
+ | 0.4105 | 10600 | 0.0 | - |
377
+ | 0.4124 | 10650 | 0.0 | - |
378
+ | 0.4144 | 10700 | 0.0 | - |
379
+ | 0.4163 | 10750 | 0.0 | - |
380
+ | 0.4182 | 10800 | 0.0 | - |
381
+ | 0.4202 | 10850 | 0.0 | - |
382
+ | 0.4221 | 10900 | 0.0 | - |
383
+ | 0.4240 | 10950 | 0.0 | - |
384
+ | 0.4260 | 11000 | 0.0 | - |
385
+ | 0.4279 | 11050 | 0.0 | - |
386
+ | 0.4298 | 11100 | 0.0 | - |
387
+ | 0.4318 | 11150 | 0.0 | - |
388
+ | 0.4337 | 11200 | 0.0 | - |
389
+ | 0.4357 | 11250 | 0.0 | - |
390
+ | 0.4376 | 11300 | 0.0 | - |
391
+ | 0.4395 | 11350 | 0.0 | - |
392
+ | 0.4415 | 11400 | 0.0 | - |
393
+ | 0.4434 | 11450 | 0.0 | - |
394
+ | 0.4453 | 11500 | 0.0 | - |
395
+ | 0.4473 | 11550 | 0.0 | - |
396
+ | 0.4492 | 11600 | 0.0 | - |
397
+ | 0.4511 | 11650 | 0.0 | - |
398
+ | 0.4531 | 11700 | 0.0 | - |
399
+ | 0.4550 | 11750 | 0.0 | - |
400
+ | 0.4570 | 11800 | 0.0 | - |
401
+ | 0.4589 | 11850 | 0.0109 | - |
402
+ | 0.4608 | 11900 | 0.0218 | - |
403
+ | 0.4628 | 11950 | 0.0073 | - |
404
+ | 0.4647 | 12000 | 0.0056 | - |
405
+ | 0.4666 | 12050 | 0.0037 | - |
406
+ | 0.4686 | 12100 | 0.0011 | - |
407
+ | 0.4705 | 12150 | 0.0002 | - |
408
+ | 0.4724 | 12200 | 0.0014 | - |
409
+ | 0.4744 | 12250 | 0.0031 | - |
410
+ | 0.4763 | 12300 | 0.0013 | - |
411
+ | 0.4783 | 12350 | 0.0012 | - |
412
+ | 0.4802 | 12400 | 0.0022 | - |
413
+ | 0.4821 | 12450 | 0.0003 | - |
414
+ | 0.4841 | 12500 | 0.0 | - |
415
+ | 0.4860 | 12550 | 0.0 | - |
416
+ | 0.4879 | 12600 | 0.0 | - |
417
+ | 0.4899 | 12650 | 0.0 | - |
418
+ | 0.4918 | 12700 | 0.0 | - |
419
+ | 0.4937 | 12750 | 0.0 | - |
420
+ | 0.4957 | 12800 | 0.0 | - |
421
+ | 0.4976 | 12850 | 0.0 | - |
422
+ | 0.4996 | 12900 | 0.0 | - |
423
+ | 0.5015 | 12950 | 0.0 | - |
424
+ | 0.5034 | 13000 | 0.0 | - |
425
+ | 0.5054 | 13050 | 0.0 | - |
426
+ | 0.5073 | 13100 | 0.0 | - |
427
+ | 0.5092 | 13150 | 0.0 | - |
428
+ | 0.5112 | 13200 | 0.0 | - |
429
+ | 0.5131 | 13250 | 0.0 | - |
430
+ | 0.5150 | 13300 | 0.0 | - |
431
+ | 0.5170 | 13350 | 0.0 | - |
432
+ | 0.5189 | 13400 | 0.0 | - |
433
+ | 0.5209 | 13450 | 0.0 | - |
434
+ | 0.5228 | 13500 | 0.0 | - |
435
+ | 0.5247 | 13550 | 0.0 | - |
436
+ | 0.5267 | 13600 | 0.0 | - |
437
+ | 0.5286 | 13650 | 0.0 | - |
438
+ | 0.5305 | 13700 | 0.0 | - |
439
+ | 0.5325 | 13750 | 0.0 | - |
440
+ | 0.5344 | 13800 | 0.0 | - |
441
+ | 0.5363 | 13850 | 0.0 | - |
442
+ | 0.5383 | 13900 | 0.0 | - |
443
+ | 0.5402 | 13950 | 0.0 | - |
444
+ | 0.5422 | 14000 | 0.0 | - |
445
+ | 0.5441 | 14050 | 0.0 | - |
446
+ | 0.5460 | 14100 | 0.0 | - |
447
+ | 0.5480 | 14150 | 0.0 | - |
448
+ | 0.5499 | 14200 | 0.0 | - |
449
+ | 0.5518 | 14250 | 0.0 | - |
450
+ | 0.5538 | 14300 | 0.0 | - |
451
+ | 0.5557 | 14350 | 0.0 | - |
452
+ | 0.5576 | 14400 | 0.0 | - |
453
+ | 0.5596 | 14450 | 0.0 | - |
454
+ | 0.5615 | 14500 | 0.0 | - |
455
+ | 0.5635 | 14550 | 0.0 | - |
456
+ | 0.5654 | 14600 | 0.0 | - |
457
+ | 0.5673 | 14650 | 0.0 | - |
458
+ | 0.5693 | 14700 | 0.0 | - |
459
+ | 0.5712 | 14750 | 0.0 | - |
460
+ | 0.5731 | 14800 | 0.0 | - |
461
+ | 0.5751 | 14850 | 0.0 | - |
462
+ | 0.5770 | 14900 | 0.0 | - |
463
+ | 0.5789 | 14950 | 0.0 | - |
464
+ | 0.5809 | 15000 | 0.0 | - |
465
+ | 0.5828 | 15050 | 0.0 | - |
466
+ | 0.5848 | 15100 | 0.0 | - |
467
+ | 0.5867 | 15150 | 0.0 | - |
468
+ | 0.5886 | 15200 | 0.0 | - |
469
+ | 0.5906 | 15250 | 0.0 | - |
470
+ | 0.5925 | 15300 | 0.0 | - |
471
+ | 0.5944 | 15350 | 0.0 | - |
472
+ | 0.5964 | 15400 | 0.0 | - |
473
+ | 0.5983 | 15450 | 0.0 | - |
474
+ | 0.6002 | 15500 | 0.0 | - |
475
+ | 0.6022 | 15550 | 0.0 | - |
476
+ | 0.6041 | 15600 | 0.0 | - |
477
+ | 0.6060 | 15650 | 0.0 | - |
478
+ | 0.6080 | 15700 | 0.0 | - |
479
+ | 0.6099 | 15750 | 0.0 | - |
480
+ | 0.6119 | 15800 | 0.0 | - |
481
+ | 0.6138 | 15850 | 0.0 | - |
482
+ | 0.6157 | 15900 | 0.0 | - |
483
+ | 0.6177 | 15950 | 0.0 | - |
484
+ | 0.6196 | 16000 | 0.0 | - |
485
+ | 0.6215 | 16050 | 0.0 | - |
486
+ | 0.6235 | 16100 | 0.0 | - |
487
+ | 0.6254 | 16150 | 0.0002 | - |
488
+ | 0.6273 | 16200 | 0.0 | - |
489
+ | 0.6293 | 16250 | 0.0002 | - |
490
+ | 0.6312 | 16300 | 0.0034 | - |
491
+ | 0.6332 | 16350 | 0.0062 | - |
492
+ | 0.6351 | 16400 | 0.0034 | - |
493
+ | 0.6370 | 16450 | 0.0001 | - |
494
+ | 0.6390 | 16500 | 0.0004 | - |
495
+ | 0.6409 | 16550 | 0.0 | - |
496
+ | 0.6428 | 16600 | 0.0 | - |
497
+ | 0.6448 | 16650 | 0.0 | - |
498
+ | 0.6467 | 16700 | 0.0 | - |
499
+ | 0.6486 | 16750 | 0.0 | - |
500
+ | 0.6506 | 16800 | 0.0 | - |
501
+ | 0.6525 | 16850 | 0.0 | - |
502
+ | 0.6545 | 16900 | 0.0 | - |
503
+ | 0.6564 | 16950 | 0.0 | - |
504
+ | 0.6583 | 17000 | 0.0 | - |
505
+ | 0.6603 | 17050 | 0.0 | - |
506
+ | 0.6622 | 17100 | 0.0 | - |
507
+ | 0.6641 | 17150 | 0.0 | - |
508
+ | 0.6661 | 17200 | 0.0 | - |
509
+ | 0.6680 | 17250 | 0.0 | - |
510
+ | 0.6699 | 17300 | 0.0 | - |
511
+ | 0.6719 | 17350 | 0.0 | - |
512
+ | 0.6738 | 17400 | 0.0 | - |
513
+ | 0.6758 | 17450 | 0.0 | - |
514
+ | 0.6777 | 17500 | 0.0 | - |
515
+ | 0.6796 | 17550 | 0.0 | - |
516
+ | 0.6816 | 17600 | 0.0 | - |
517
+ | 0.6835 | 17650 | 0.0 | - |
518
+ | 0.6854 | 17700 | 0.0 | - |
519
+ | 0.6874 | 17750 | 0.0 | - |
520
+ | 0.6893 | 17800 | 0.0 | - |
521
+ | 0.6912 | 17850 | 0.0 | - |
522
+ | 0.6932 | 17900 | 0.0 | - |
523
+ | 0.6951 | 17950 | 0.0 | - |
524
+ | 0.6971 | 18000 | 0.0 | - |
525
+ | 0.6990 | 18050 | 0.0 | - |
526
+ | 0.7009 | 18100 | 0.0 | - |
527
+ | 0.7029 | 18150 | 0.0 | - |
528
+ | 0.7048 | 18200 | 0.0 | - |
529
+ | 0.7067 | 18250 | 0.0 | - |
530
+ | 0.7087 | 18300 | 0.0 | - |
531
+ | 0.7106 | 18350 | 0.0 | - |
532
+ | 0.7125 | 18400 | 0.0 | - |
533
+ | 0.7145 | 18450 | 0.0 | - |
534
+ | 0.7164 | 18500 | 0.0 | - |
535
+ | 0.7184 | 18550 | 0.0 | - |
536
+ | 0.7203 | 18600 | 0.0 | - |
537
+ | 0.7222 | 18650 | 0.0 | - |
538
+ | 0.7242 | 18700 | 0.0 | - |
539
+ | 0.7261 | 18750 | 0.0 | - |
540
+ | 0.7280 | 18800 | 0.0 | - |
541
+ | 0.7300 | 18850 | 0.0 | - |
542
+ | 0.7319 | 18900 | 0.0 | - |
543
+ | 0.7338 | 18950 | 0.0 | - |
544
+ | 0.7358 | 19000 | 0.0 | - |
545
+ | 0.7377 | 19050 | 0.0 | - |
546
+ | 0.7397 | 19100 | 0.0 | - |
547
+ | 0.7416 | 19150 | 0.0 | - |
548
+ | 0.7435 | 19200 | 0.0 | - |
549
+ | 0.7455 | 19250 | 0.0 | - |
550
+ | 0.7474 | 19300 | 0.0 | - |
551
+ | 0.7493 | 19350 | 0.0 | - |
552
+ | 0.7513 | 19400 | 0.0 | - |
553
+ | 0.7532 | 19450 | 0.0 | - |
554
+ | 0.7551 | 19500 | 0.0 | - |
555
+ | 0.7571 | 19550 | 0.0 | - |
556
+ | 0.7590 | 19600 | 0.0 | - |
557
+ | 0.7609 | 19650 | 0.0 | - |
558
+ | 0.7629 | 19700 | 0.0 | - |
559
+ | 0.7648 | 19750 | 0.0 | - |
560
+ | 0.7668 | 19800 | 0.0 | - |
561
+ | 0.7687 | 19850 | 0.0 | - |
562
+ | 0.7706 | 19900 | 0.0 | - |
563
+ | 0.7726 | 19950 | 0.0 | - |
564
+ | 0.7745 | 20000 | 0.0 | - |
565
+ | 0.7764 | 20050 | 0.0 | - |
566
+ | 0.7784 | 20100 | 0.0 | - |
567
+ | 0.7803 | 20150 | 0.0 | - |
568
+ | 0.7822 | 20200 | 0.0 | - |
569
+ | 0.7842 | 20250 | 0.0 | - |
570
+ | 0.7861 | 20300 | 0.0 | - |
571
+ | 0.7881 | 20350 | 0.0 | - |
572
+ | 0.7900 | 20400 | 0.0 | - |
573
+ | 0.7919 | 20450 | 0.0 | - |
574
+ | 0.7939 | 20500 | 0.0 | - |
575
+ | 0.7958 | 20550 | 0.0 | - |
576
+ | 0.7977 | 20600 | 0.0 | - |
577
+ | 0.7997 | 20650 | 0.0 | - |
578
+ | 0.8016 | 20700 | 0.0 | - |
579
+ | 0.8035 | 20750 | 0.0 | - |
580
+ | 0.8055 | 20800 | 0.0 | - |
581
+ | 0.8074 | 20850 | 0.0 | - |
582
+ | 0.8094 | 20900 | 0.0 | - |
583
+ | 0.8113 | 20950 | 0.0 | - |
584
+ | 0.8132 | 21000 | 0.0 | - |
585
+ | 0.8152 | 21050 | 0.0 | - |
586
+ | 0.8171 | 21100 | 0.0 | - |
587
+ | 0.8190 | 21150 | 0.0 | - |
588
+ | 0.8210 | 21200 | 0.0 | - |
589
+ | 0.8229 | 21250 | 0.0 | - |
590
+ | 0.8248 | 21300 | 0.0 | - |
591
+ | 0.8268 | 21350 | 0.0 | - |
592
+ | 0.8287 | 21400 | 0.0 | - |
593
+ | 0.8307 | 21450 | 0.0 | - |
594
+ | 0.8326 | 21500 | 0.0 | - |
595
+ | 0.8345 | 21550 | 0.0 | - |
596
+ | 0.8365 | 21600 | 0.0 | - |
597
+ | 0.8384 | 21650 | 0.0 | - |
598
+ | 0.8403 | 21700 | 0.0 | - |
599
+ | 0.8423 | 21750 | 0.0 | - |
600
+ | 0.8442 | 21800 | 0.0 | - |
601
+ | 0.8461 | 21850 | 0.0 | - |
602
+ | 0.8481 | 21900 | 0.0 | - |
603
+ | 0.8500 | 21950 | 0.0 | - |
604
+ | 0.8520 | 22000 | 0.0 | - |
605
+ | 0.8539 | 22050 | 0.0 | - |
606
+ | 0.8558 | 22100 | 0.0 | - |
607
+ | 0.8578 | 22150 | 0.0 | - |
608
+ | 0.8597 | 22200 | 0.0 | - |
609
+ | 0.8616 | 22250 | 0.0 | - |
610
+ | 0.8636 | 22300 | 0.0 | - |
611
+ | 0.8655 | 22350 | 0.0 | - |
612
+ | 0.8674 | 22400 | 0.0 | - |
613
+ | 0.8694 | 22450 | 0.0 | - |
614
+ | 0.8713 | 22500 | 0.0 | - |
615
+ | 0.8733 | 22550 | 0.0 | - |
616
+ | 0.8752 | 22600 | 0.0 | - |
617
+ | 0.8771 | 22650 | 0.0 | - |
618
+ | 0.8791 | 22700 | 0.0 | - |
619
+ | 0.8810 | 22750 | 0.0 | - |
620
+ | 0.8829 | 22800 | 0.0 | - |
621
+ | 0.8849 | 22850 | 0.0 | - |
622
+ | 0.8868 | 22900 | 0.0 | - |
623
+ | 0.8887 | 22950 | 0.0 | - |
624
+ | 0.8907 | 23000 | 0.0 | - |
625
+ | 0.8926 | 23050 | 0.0 | - |
626
+ | 0.8946 | 23100 | 0.0 | - |
627
+ | 0.8965 | 23150 | 0.0 | - |
628
+ | 0.8984 | 23200 | 0.0 | - |
629
+ | 0.9004 | 23250 | 0.0 | - |
630
+ | 0.9023 | 23300 | 0.0 | - |
631
+ | 0.9042 | 23350 | 0.0 | - |
632
+ | 0.9062 | 23400 | 0.0 | - |
633
+ | 0.9081 | 23450 | 0.0 | - |
634
+ | 0.9100 | 23500 | 0.0 | - |
635
+ | 0.9120 | 23550 | 0.0 | - |
636
+ | 0.9139 | 23600 | 0.0 | - |
637
+ | 0.9159 | 23650 | 0.0 | - |
638
+ | 0.9178 | 23700 | 0.0 | - |
639
+ | 0.9197 | 23750 | 0.0 | - |
640
+ | 0.9217 | 23800 | 0.0 | - |
641
+ | 0.9236 | 23850 | 0.0 | - |
642
+ | 0.9255 | 23900 | 0.0 | - |
643
+ | 0.9275 | 23950 | 0.0 | - |
644
+ | 0.9294 | 24000 | 0.0 | - |
645
+ | 0.9313 | 24050 | 0.0 | - |
646
+ | 0.9333 | 24100 | 0.0 | - |
647
+ | 0.9352 | 24150 | 0.0 | - |
648
+ | 0.9371 | 24200 | 0.0 | - |
649
+ | 0.9391 | 24250 | 0.0 | - |
650
+ | 0.9410 | 24300 | 0.0 | - |
651
+ | 0.9430 | 24350 | 0.0 | - |
652
+ | 0.9449 | 24400 | 0.0 | - |
653
+ | 0.9468 | 24450 | 0.0 | - |
654
+ | 0.9488 | 24500 | 0.0 | - |
655
+ | 0.9507 | 24550 | 0.0 | - |
656
+ | 0.9526 | 24600 | 0.0 | - |
657
+ | 0.9546 | 24650 | 0.0 | - |
658
+ | 0.9565 | 24700 | 0.0 | - |
659
+ | 0.9584 | 24750 | 0.0 | - |
660
+ | 0.9604 | 24800 | 0.0 | - |
661
+ | 0.9623 | 24850 | 0.0 | - |
662
+ | 0.9643 | 24900 | 0.0 | - |
663
+ | 0.9662 | 24950 | 0.0 | - |
664
+ | 0.9681 | 25000 | 0.0 | - |
665
+ | 0.9701 | 25050 | 0.0 | - |
666
+ | 0.9720 | 25100 | 0.0 | - |
667
+ | 0.9739 | 25150 | 0.0 | - |
668
+ | 0.9759 | 25200 | 0.0 | - |
669
+ | 0.9778 | 25250 | 0.0 | - |
670
+ | 0.9797 | 25300 | 0.0 | - |
671
+ | 0.9817 | 25350 | 0.0 | - |
672
+ | 0.9836 | 25400 | 0.0 | - |
673
+ | 0.9856 | 25450 | 0.0 | - |
674
+ | 0.9875 | 25500 | 0.0 | - |
675
+ | 0.9894 | 25550 | 0.0 | - |
676
+ | 0.9914 | 25600 | 0.0 | - |
677
+ | 0.9933 | 25650 | 0.0 | - |
678
+ | 0.9952 | 25700 | 0.0 | - |
679
+ | 0.9972 | 25750 | 0.0 | - |
680
+ | 0.9991 | 25800 | 0.0 | - |
681
+
682
+ ### Framework Versions
683
+ - Python: 3.10.12
684
+ - SetFit: 1.1.0
685
+ - Sentence Transformers: 3.3.1
686
+ - Transformers: 4.42.2
687
+ - PyTorch: 2.5.1+cu121
688
+ - Datasets: 3.2.0
689
+ - Tokenizers: 0.19.1
690
+
691
+ ## Citation
692
+
693
+ ### BibTeX
694
+ ```bibtex
695
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
696
+ doi = {10.48550/ARXIV.2209.11055},
697
+ url = {https://arxiv.org/abs/2209.11055},
698
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
699
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
700
+ title = {Efficient Few-Shot Learning Without Prompts},
701
+ publisher = {arXiv},
702
+ year = {2022},
703
+ copyright = {Creative Commons Attribution 4.0 International}
704
+ }
705
+ ```
706
+
707
+ <!--
708
+ ## Glossary
709
+
710
+ *Clearly define terms in order to be accessible across audiences.*
711
+ -->
712
+
713
+ <!--
714
+ ## Model Card Authors
715
+
716
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
717
+ -->
718
+
719
+ <!--
720
+ ## Model Card Contact
721
+
722
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
723
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.42.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.42.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "neutral",
4
+ "opposed",
5
+ "supportive"
6
+ ],
7
+ "normalize_embeddings": false
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de4ba02552f87155404092e35937882bd0ae41360d70419433d5a887adbc7904
3
+ size 1112197096
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6aeec9c1bc590f71152f715dcdc34737edc05752c8fe5428e947f50db8bc44f
3
+ size 19423
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }