File size: 99,851 Bytes
7a6cb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:68534726
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: how to sign legal documents as power of attorney?
  sentences:
  - 'After the principal''s name, write “by” and then sign your own name. Under or
    after the signature line, indicate your status as POA by including any of the
    following identifiers: as POA, as Agent, as Attorney in Fact or as Power of Attorney.'
  - Most earthquakes occur along the edge of the oceanic and continental plates. The
    earth's crust (the outer layer of the planet) is made up of several pieces, called
    plates. The plates under the oceans are called oceanic plates and the rest are
    continental plates.
  - Go to System -> VDOM -> VDOM2 and select 'Delete'. This VDOM is now successfully
    removed from the configuration.
- source_sentence: what is upwork
  sentences:
  - Upwork, formerly Elance-oDesk, is a global freelancing platform where businesses
    and independent professionals connect and collaborate remotely.In 2015, Elance-oDesk
    was rebranded as Upwork. It is based out of Mountain View and San Francisco, California.pwork
    has nine million registered freelancers and four million registered clients. Three
    million jobs are posted annually, worth a total of $1 billion USD, making it the
    world's largest freelancer marketplace.
  - Upwork, formerly Elance-oDesk, is a global freelancing platform where businesses
    and independent professionals connect and collaborate remotely.In 2015, Elance-oDesk
    was rebranded as Upwork. It is based out of Mountain View and San Francisco, California.pwork
    has nine million registered freelancers and four million registered clients. Three
    million jobs are posted annually, worth a total of $1 billion USD, making it the
    world's largest freelancer marketplace.
  - 'That is, while fructose consumption may increase uric acid levels, to actually
    precipitate a gout attack, you need to deviate from the narrow band of normal
    blood pH range: 7.35 to 7.45. Ideally you wanna be at 7.45 or slightly above.'
- source_sentence: how many km is a mile
  sentences:
  - Periodontal disease is a bacterial infection of the gums and bone that if not
    treated, can cause you to lose your teeth. Medical research is now showing that
    these bacteria in your mouth can also travel through your bloodstream into other
    organs in the body.
  - Master the formula for converting kilometers to miles. 1 kilometer is equal to
    0.621371 miles (often shortened to .62).1 mile is equal to 1.609344 kilometers.
    Thus, to convert kilometers to miles, simply multiply the number of kilometers
    by 0.62137. For example, let's say you start with 5 kilometers. People are often
    interested in this conversion because they want to know how many miles are in
    a 5K run. The formula is 5 X 0.62137= 3.1 miles.
  - To find out how many kilometers in miles, multiply by this factor or simply use
    the converter below. 1 Mile = 1.609344 Kilometers. Mile is an imperial and US
    customary length unit and equals to 5280 feet. The abbreviation is mi. Kilometer
    is a metric length unit and equals to 1000 meters.
- source_sentence: A group of children walking on a trail.
  sentences:
  - The man is performing.
  - Children are walking.
  - The people are adults.
- source_sentence: A boy with a basketballs glowers at the camera.
  sentences:
  - The boy is smiling
  - The boy scowls
  - Surfer in red catches a wave.
datasets:
- sentence-transformers/gooaq
- sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
- sentence-transformers/s2orc
- sentence-transformers/all-nli
- sentence-transformers/paq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: '[REPRODUCE] Static Embeddings with BERT uncased tokenizer finetuned on various
    datasets'
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: cosine_accuracy@1
      value: 0.32
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.54
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.64
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.82
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.32
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.152
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.11199999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.15666666666666665
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.25
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.31633333333333336
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.44133333333333336
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.35027529831718174
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4537698412698412
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2754610667422747
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: cosine_accuracy@1
      value: 0.64
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.88
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.92
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.94
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.64
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.6066666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.5479999999999999
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.45399999999999996
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.05820050708225643
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.1660478879214754
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2233296888728599
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.32642161484749216
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5611886908023029
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7551904761904763
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.42159733554382045
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: cosine_accuracy@1
      value: 0.54
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.82
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.84
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.94
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.54
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2733333333333334
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5066666666666666
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7566666666666667
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8033333333333332
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9033333333333333
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7223300246075101
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6857460317460319
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6591296848555135
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: cosine_accuracy@1
      value: 0.22
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.44
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.64
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.22
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18666666666666668
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.132
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09799999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.12688888888888888
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.29007936507936505
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3347460317460317
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.453015873015873
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.33206103177846985
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.34974603174603175
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2723064374777477
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: cosine_accuracy@1
      value: 0.66
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.82
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.86
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.94
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.66
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.35999999999999993
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.264
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.14799999999999996
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.33
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.54
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.66
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.74
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6507660730204244
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.746690476190476
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5743825107321581
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: cosine_accuracy@1
      value: 0.16
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.44
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.54
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.66
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.16
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.14666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10800000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.066
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.16
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.44
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.54
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.66
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4069260774532657
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3269126984126984
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.34104660879940385
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: cosine_accuracy@1
      value: 0.4
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.54
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.34666666666666673
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.3
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.24400000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.06140064224956239
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.09381944627241434
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.11465220470723159
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.13758064454249494
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3251344168353932
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.49083333333333345
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.15346080343511273
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: cosine_accuracy@1
      value: 0.2
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.46
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.58
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.68
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15333333333333332
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12000000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07400000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.19
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.44
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.55
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.67
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4284752232212853
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3555714285714285
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.35954687250943856
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: cosine_accuracy@1
      value: 0.8
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.92
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.96
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.98
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.35999999999999993
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.23999999999999996
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.12799999999999997
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7106666666666667
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8653333333333333
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9226666666666667
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9593333333333334
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.874423773707081
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8666666666666666
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8354028527028526
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: cosine_accuracy@1
      value: 0.28
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.52
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.62
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.72
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.28
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.22666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.184
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.14
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.059666666666666666
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.1416666666666667
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.18966666666666665
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.2886666666666667
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2657817193581118
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4188571428571429
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.20270708890067454
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: cosine_accuracy@1
      value: 0.12
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.48
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.68
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.12
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15999999999999998
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.068
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.12
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.48
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.68
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4064179360568565
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.31785714285714284
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.33454708384798976
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: cosine_accuracy@1
      value: 0.52
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.64
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.74
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.52
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.22
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14400000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.485
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.61
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.655
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.72
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6053823991819648
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5862222222222221
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5721097562068183
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: cosine_accuracy@1
      value: 0.5918367346938775
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9183673469387755
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9795918367346939
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5918367346938775
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.5850340136054422
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.6000000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.5204081632653061
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.0405610423291237
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.12039267252775386
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.20296687044371778
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.3313283589291373
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5594653746925154
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.749514091350826
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4414984325557448
      name: Cosine Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: cosine_accuracy@1
      value: 0.41937205651491377
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6475667189952904
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7168916797488225
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8030769230769231
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.41937205651491377
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2942333856619571
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.23784615384615387
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.17172370486656197
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.23120905747819215
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.399538926035975
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.4702072919822955
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5623856275385894
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4991252337717202
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5464290448780245
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.41870742571611924
      name: Cosine Map@100
---

# [REPRODUCE] Static Embeddings with BERT uncased tokenizer finetuned on various datasets

This is a [sentence-transformers](https://www.SBERT.net) model trained on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq), [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1), [s2orc](https://huggingface.co/datasets/sentence-transformers/s2orc), [allnli](https://huggingface.co/datasets/sentence-transformers/all-nli) and [paq](https://huggingface.co/datasets/sentence-transformers/paq) datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** inf tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
    - [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1)
    - [s2orc](https://huggingface.co/datasets/sentence-transformers/s2orc)
    - [allnli](https://huggingface.co/datasets/sentence-transformers/all-nli)
    - [paq](https://huggingface.co/datasets/sentence-transformers/paq)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): StaticEmbedding(
    (embedding): EmbeddingBag(30522, 1024, mode='mean')
  )
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("carlfeynman/reproduce-static-retrieval-mrl-en-v1")
# Run inference
sentences = [
    'A boy with a basketballs glowers at the camera.',
    'The boy scowls',
    'The boy is smiling',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | NanoClimateFEVER | NanoDBPedia | NanoFEVER  | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ     | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
| cosine_accuracy@1   | 0.32             | 0.64        | 0.54       | 0.22         | 0.66         | 0.16        | 0.4          | 0.2        | 0.8                | 0.28        | 0.12        | 0.52        | 0.5918         |
| cosine_accuracy@3   | 0.54             | 0.88        | 0.82       | 0.44         | 0.82         | 0.44        | 0.54         | 0.46       | 0.92               | 0.52        | 0.48        | 0.64        | 0.9184         |
| cosine_accuracy@5   | 0.64             | 0.92        | 0.84       | 0.5          | 0.86         | 0.54        | 0.6          | 0.58       | 0.96               | 0.62        | 0.6         | 0.68        | 0.9796         |
| cosine_accuracy@10  | 0.82             | 0.94        | 0.94       | 0.64         | 0.94         | 0.66        | 0.7          | 0.68       | 0.98               | 0.72        | 0.68        | 0.74        | 1.0            |
| cosine_precision@1  | 0.32             | 0.64        | 0.54       | 0.22         | 0.66         | 0.16        | 0.4          | 0.2        | 0.8                | 0.28        | 0.12        | 0.52        | 0.5918         |
| cosine_precision@3  | 0.2              | 0.6067      | 0.2733     | 0.1867       | 0.36         | 0.1467      | 0.3467       | 0.1533     | 0.36               | 0.2267      | 0.16        | 0.22        | 0.585          |
| cosine_precision@5  | 0.152            | 0.548       | 0.18       | 0.132        | 0.264        | 0.108       | 0.3          | 0.12       | 0.24               | 0.184       | 0.12        | 0.144       | 0.6            |
| cosine_precision@10 | 0.112            | 0.454       | 0.1        | 0.098        | 0.148        | 0.066       | 0.244        | 0.074      | 0.128              | 0.14        | 0.068       | 0.08        | 0.5204         |
| cosine_recall@1     | 0.1567           | 0.0582      | 0.5067     | 0.1269       | 0.33         | 0.16        | 0.0614       | 0.19       | 0.7107             | 0.0597      | 0.12        | 0.485       | 0.0406         |
| cosine_recall@3     | 0.25             | 0.166       | 0.7567     | 0.2901       | 0.54         | 0.44        | 0.0938       | 0.44       | 0.8653             | 0.1417      | 0.48        | 0.61        | 0.1204         |
| cosine_recall@5     | 0.3163           | 0.2233      | 0.8033     | 0.3347       | 0.66         | 0.54        | 0.1147       | 0.55       | 0.9227             | 0.1897      | 0.6         | 0.655       | 0.203          |
| cosine_recall@10    | 0.4413           | 0.3264      | 0.9033     | 0.453        | 0.74         | 0.66        | 0.1376       | 0.67       | 0.9593             | 0.2887      | 0.68        | 0.72        | 0.3313         |
| **cosine_ndcg@10**  | **0.3503**       | **0.5612**  | **0.7223** | **0.3321**   | **0.6508**   | **0.4069**  | **0.3251**   | **0.4285** | **0.8744**         | **0.2658**  | **0.4064**  | **0.6054**  | **0.5595**     |
| cosine_mrr@10       | 0.4538           | 0.7552      | 0.6857     | 0.3497       | 0.7467       | 0.3269      | 0.4908       | 0.3556     | 0.8667             | 0.4189      | 0.3179      | 0.5862      | 0.7495         |
| cosine_map@100      | 0.2755           | 0.4216      | 0.6591     | 0.2723       | 0.5744       | 0.341       | 0.1535       | 0.3595     | 0.8354             | 0.2027      | 0.3345      | 0.5721      | 0.4415         |

#### Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4194     |
| cosine_accuracy@3   | 0.6476     |
| cosine_accuracy@5   | 0.7169     |
| cosine_accuracy@10  | 0.8031     |
| cosine_precision@1  | 0.4194     |
| cosine_precision@3  | 0.2942     |
| cosine_precision@5  | 0.2378     |
| cosine_precision@10 | 0.1717     |
| cosine_recall@1     | 0.2312     |
| cosine_recall@3     | 0.3995     |
| cosine_recall@5     | 0.4702     |
| cosine_recall@10    | 0.5624     |
| **cosine_ndcg@10**  | **0.4991** |
| cosine_mrr@10       | 0.5464     |
| cosine_map@100      | 0.4187     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### gooaq

* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                                       | answer                                                                                           |
  |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                           |
  | details | <ul><li>min: 18 characters</li><li>mean: 43.23 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 55 characters</li><li>mean: 253.36 characters</li><li>max: 371 characters</li></ul> |
* Samples:
  | question                                                                           | answer                                                                                                                                                                                                                                                                                                                |
  |:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what is the difference between broilers and layers?</code>                   | <code>An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.</code>                |
  | <code>what is the difference between chronological order and spatial order?</code> | <code>As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.</code> |
  | <code>is kamagra same as viagra?</code>                                            | <code>Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.</code>                               |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 502,939 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                           | positive                                                                                          | negative                                                                                         |
  |:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                            | string                                                                                           |
  | details | <ul><li>min: 11 characters</li><li>mean: 33.26 characters</li><li>max: 197 characters</li></ul> | <ul><li>min: 96 characters</li><li>mean: 356.24 characters</li><li>max: 1006 characters</li></ul> | <ul><li>min: 68 characters</li><li>mean: 327.52 characters</li><li>max: 995 characters</li></ul> |
* Samples:
  | query                                        | positive                                                                                                                                                                                                                                                                                                                               | negative                                                                                                                                                                                                                                                                                                                                       |
  |:---------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>when was the sullivan acts</code>      | <code>Sullivan Act Tim Sullivan, a major Irish criminal passed the Sullivan Act in 1911 to help his constituents rob strangers or to help them against Italian incomers. That is the crux of story that goes with a very early gun control law.</code>                                                                                 | <code>Sullivan Act Tim Sullivan, a major Irish criminal passed the Sullivan Act in 1911 to help his constituents rob strangers or to help them against Italian incomers. That is the crux of story that goes with a very early gun control law.</code>                                                                                         |
  | <code>can lavender grow indoors</code>       | <code>Growing Lavender Indoors. People ALWAYS ask if you can grow lavender indoors. Well, you can, but most Lavender does best outside. Here is our winter experiment to show you what it would look like. This is one of our 4 Lavender Babies from Fall 2010. Our test specimen is L. x intermedia 'Grosso'.</code>                  | <code>Lavender can be grown indoors with a bit of effort to keep it in the conditions it loves to thrive. First off begin with choosing a variety that is better able to tolerate the conditions inside a home. To successfully grow Lavender indoors you need to create optimal growing conditions which is hard to do inside a house.</code> |
  | <code>what kind of barley do you malt</code> | <code>Barley is a wonderfully versatile cereal grain with a rich nutlike flavor and an appealing chewy, pasta-like consistency. Its appearance resembles wheat berries, although it is slightly lighter in color. Sprouted barley is naturally high in maltose, a sugar that serves as the basis for both malt syrup sweetener.</code> | <code>Specialty grains that can be used in this way are usually barley, malted or unmalted, that has been treated differently at the malting company. Crystal malt is one of the specialty grains. It is available in a whole range of colors, from 20 to 120 Lovibond. Crystal malt is malted barley that is heated while wet.</code>         |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### s2orc

* Dataset: [s2orc](https://huggingface.co/datasets/sentence-transformers/s2orc) at [8cfc394](https://huggingface.co/datasets/sentence-transformers/s2orc/tree/8cfc394e83b2ebfcf38f90b508aea383df742439)
* Size: 90,000 training samples
* Columns: <code>title</code> and <code>abstract</code>
* Approximate statistics based on the first 1000 samples:
  |         | title                                                                                           | abstract                                                                                          |
  |:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                            |
  | details | <ul><li>min: 31 characters</li><li>mean: 80.02 characters</li><li>max: 185 characters</li></ul> | <ul><li>min: 84 characters</li><li>mean: 635.31 characters</li><li>max: 1023 characters</li></ul> |
* Samples:
  | title                                                                                                                 | abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  |:----------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Modeling Method of Flow Diversion of the Three Outlets in Jingjiang Reach Under Unsteady Flow Conditions</code> | <code>The Yangtze River Flood Protection Physical Model is built under the financial support of World Bank loan.Based on theoretical analysis and experimental study,a modeling method of flow diversion of the three outlets in Jingjiang Reach under unsteady flow conditions was established for the model.Validation tests under both steady and unsteady flow conditions manifested that with this modeling method,the experimental flow diversion proves to be consistent with that of the prototype and therefore meets the requirements for precision.Being validated,this modeling method has been applied to Yangtze River Flood Protection Physical Model to study the flood routing features in Jingjiang reach.</code>                                                                                                                                                                     |
  | <code>Enlightening on medical administration by clinical governance in British</code>                                 | <code>Medical quality and safety were the responsibilities of medical system in view of British clinical governance. Medical regulation institutes were considered to be built and be authorized regulation rights. British medical administration was introduced and its enlightening in China was mentioned.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>APPLICATION OF A FUZZY MULTI-CRITERIA DECISION-MAKING MODEL FOR SHIPPING COMPANY PERFORMANCE EVALUATION</code>  | <code>Combining fuzzy set theory, Analytic Hierarchy Process (AHP) and concept of entropy, a fuzzy Multiple Criteria Decision-Making (MCDM) model for shipping company performance evaluation is proposed. First, the AHP is used to construct subjective weights for all criteria and sub-criteria. Then, linguistic values characterized by triangular fuzzy numbers and trapezoidal fuzzy numbers are used to denote the evaluation values of all alternatives with respect to various subjective and objective criteria. Finally, the aggregation fuzzy assessment of different shipping companies is ranked to determine the best selection. Utilizing this fuzzy MCDM model, the decision-maker's fuzzy assessment and the trade-off between various evaluations criteria can be taken into account in the aggregation process, thus ensuring more effective and accurate decision-making.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### allnli

* Dataset: [allnli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 557,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                                          | positive                                                                                        | negative                                                                                        |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 18 characters</li><li>mean: 34.88 characters</li><li>max: 193 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 46.49 characters</li><li>max: 181 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 50.47 characters</li><li>max: 204 characters</li></ul> |
* Samples:
  | anchor                                                                     | positive                                         | negative                                                   |
  |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
  | <code>A person on a horse jumps over a broken down airplane.</code>        | <code>A person is outdoors, on a horse.</code>   | <code>A person is at a diner, ordering an omelette.</code> |
  | <code>Children smiling and waving at camera</code>                         | <code>There are children present</code>          | <code>The kids are frowning</code>                         |
  | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code>             |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### paq

* Dataset: [paq](https://huggingface.co/datasets/sentence-transformers/paq) at [74601d8](https://huggingface.co/datasets/sentence-transformers/paq/tree/74601d8d731019bc9c627ffc4271cdd640e1e748)
* Size: 64,371,441 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                           | answer                                                                                            |
  |:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                            |
  | details | <ul><li>min: 25 characters</li><li>mean: 50.56 characters</li><li>max: 104 characters</li></ul> | <ul><li>min: 509 characters</li><li>mean: 620.96 characters</li><li>max: 773 characters</li></ul> |
* Samples:
  | query                                                                       | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  |:----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>in veetla visheshanga ganesh is the husband of</code>                 | <code>Veetla Visheshanga a song which reminds Ganga's memory. She is actually not Ganga but Gowri and her lover is the groom named Ganesh. When both were about to marry they were stopped by some goons because of which Gowri fell from the mountain but survived with injuries. Gopal who found the truth brought Ganesh to unite them. Gopal insists Gowri to marry Ganesh as both of them are lovers to which Gowri unwillingly accepts. But while Ganesh tries to tie the Mangal Sutra, Gowri stops him and she goes to Gopal saying that he may not need her but she needs him</code>                                                                                                                                                                              |
  | <code>when did simon property group became a publicly traded company</code> | <code>of the S&P 100. Simon Property Group has been the subject of several lawsuits and investigations regarding civil rights and discrimination. Simon Property Group was formed in 1993 when the majority of the shopping center interests of Melvin Simon & Associates became a publicly traded company. Melvin Simon & Associates, owned by brothers Melvin Simon and Herbert Simon, was founded in 1960 in Indianapolis, Indiana, and had long been one of the top shopping center developers in the United States. In 1996, Simon DeBartolo Group was created when Simon Property merged with former rival DeBartolo Realty Corp. This was shortly</code>                                                                                                           |
  | <code>what was the nationality of antoine faivre</code>                     | <code>Theosophy (Boehmian) below. "Theosophy": The scholar of esotericism Wouter Hanegraaff described Christian theosophy as "one of the major currents in the history of Western esotericism". Christian theosophy is an under-researched area; a general history of it has never been written. The French scholar Antoine Faivre had a specific interest in the theosophers and illuminists of the eighteenth and nineteenth centuries. He wrote his doctoral thesis on Karl von Eckartshausen and Christian theosophy. Scholars of esotericism have argued that Faivre's definition of Western esotericism relies on his own specialist focus on Christian theosophy, Renaissance Hermeticism, and Romantic "Naturphilosophie" and therefore creates an "ideal"</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Datasets

#### gooaq

* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                                       | answer                                                                                           |
  |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                           |
  | details | <ul><li>min: 18 characters</li><li>mean: 43.17 characters</li><li>max: 98 characters</li></ul> | <ul><li>min: 51 characters</li><li>mean: 254.12 characters</li><li>max: 360 characters</li></ul> |
* Samples:
  | question                                                                     | answer                                                                                                                                                                                                                                                                                                                                     |
  |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how do i program my directv remote with my tv?</code>                  | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code>                                                                                               |
  | <code>are rodrigues fruit bats nocturnal?</code>                             | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code>                                                                                                  |
  | <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 502,939 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                           | positive                                                                                         | negative                                                                                         |
  |:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                           | string                                                                                           |
  | details | <ul><li>min: 10 characters</li><li>mean: 33.36 characters</li><li>max: 137 characters</li></ul> | <ul><li>min: 67 characters</li><li>mean: 347.87 characters</li><li>max: 906 characters</li></ul> | <ul><li>min: 57 characters</li><li>mean: 318.18 characters</li><li>max: 906 characters</li></ul> |
* Samples:
  | query                                            | positive                                                                                                                                                                                                                                                                                                                                   | negative                                                                                                                                                                                                                                                                                                                                  |
  |:-------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>is cabinet refacing worth the cost?</code> | <code>Fans of refacing say this mini-makeover can give a kitchen a whole new look at a much lower cost than installing all-new cabinets. Cabinet refacing can save up to 50 percent compared to the cost of replacing, says Cheryl Catalano, owner of Kitchen Solvers, a cabinet refacing franchise in Napierville, Illinois. From.</code> | <code>Most cabinet refacing projects cost about $4,000 to $10,000. The price varies based on the materials you select and the size and configuration of your kitchen. Wood veneer doors, for example, will cost less than solid wood doors.</code>                                                                                        |
  | <code>is the fovea ethmoidalis a bone</code>     | <code>Ethmoid bone/fovea ethmoidalis. The medial portion of the ethmoid bone is a cruciate membranous bone composed of the crista galli, cribriform plate, and perpendicular ethmoidal plate. The crista is a thick piece of bone, shaped like a “cock's comb,” that projects intracranially and attaches to the falx cerebri.</code>  | <code>Ethmoid bone/fovea ethmoidalis. The medial portion of the ethmoid bone is a cruciate membranous bone composed of the crista galli, cribriform plate, and perpendicular ethmoidal plate. The crista is a thick piece of bone, shaped like a “cock's comb,” that projects intracranially and attaches to the falx cerebri.</code> |
  | <code>average pitches per inning</code>          | <code>The likelihood of a pitcher completing nine innings if he throws an average of 14 pitches or less per inning is reinforced by the totals of the 89 games in which pitchers did actually complete nine innings of work.</code>                                                                                                        | <code>The likelihood of a pitcher completing nine innings if he throws an average of 14 pitches or less per inning is reinforced by the totals of the 89 games in which pitchers did actually complete nine innings of work.</code>                                                                                                       |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### s2orc

* Dataset: [s2orc](https://huggingface.co/datasets/sentence-transformers/s2orc) at [8cfc394](https://huggingface.co/datasets/sentence-transformers/s2orc/tree/8cfc394e83b2ebfcf38f90b508aea383df742439)
* Size: 10,000 evaluation samples
* Columns: <code>title</code> and <code>abstract</code>
* Approximate statistics based on the first 1000 samples:
  |         | title                                                                                           | abstract                                                                                          |
  |:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                            |
  | details | <ul><li>min: 31 characters</li><li>mean: 80.04 characters</li><li>max: 198 characters</li></ul> | <ul><li>min: 96 characters</li><li>mean: 653.93 characters</li><li>max: 1023 characters</li></ul> |
* Samples:
  | title                                                                                                        | abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:-------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Screen Printing Ink Film Thickness Analysis of the Passive RFID Tag Antenna</code>                     | <code>The relationship between the screen mesh and the theoretical and practical ink film thickness was analyzed based on the main influencing factors of the ink film thickness by screen printing.A calculation model for the ink thickness was established based on the screen under static and compressive deformation.The relation curve between the screen mesh and the ink film thickness was fitted and the suitable printing craft parameter was chosen to print two kinds of RFID tag antennas.The fluctuation of the antenna resistance was analyzed to demonstrate the reliability of the passive RFID tag antenna manufactured by screen printing technology.</code>                                                                                                                                                                                                                                                                                                                                                                        |
  | <code>Subclinical organ damage and cardiovascular risk prediction</code>                                     | <code>AbstractTraditional cardiovascular risk factors have poor prognostic value for individuals and screening for subclinical organ damage has been recommended in hypertension in recent guidelines. The aim of this review was to investigate the clinical impact of the additive prognostic information provided by measuring subclinical organ damage. We have (i) reviewed recent studies linking markers of subclinical organ damage in the heart, blood vessels and kidney to cardiovascular risk; (ii) discussed the evidence for improvement in cardiovascular risk prediction using markers of subclinical organ damage; (iii) investigated which and how many markers to measure and (iv) finally discussed whether measuring subclinical organ damage provided benefits beyond risk prediction. In conclusion, more studies and if possible randomized studies are needed to investigate (i) the importance of markers of subclinical organ damage for risk discrimination, calibration and reclassification; and (ii) the econom...</code> |
  | <code>A Novel Approach to Simulate Climate Change Impacts on Vascular Epiphytes: Case Study in Taiwan</code> | <code>In the wet tropics, epiphytes form a conspicuous layer in the forest canopy, support abundant coexisting biota, and are known to have a critical influence on forest hydrology and nutrient cycling. Since canopy-dwelling plants have no vascular connection to the ground or their host plants, they are likely more sensitive to environmental changes than their soil-rooted counterparts, subsequently regarded as one of the groups most vulnerable to global climate change. Epiphytes have adapted to life in highly dynamic forest canopies by producing many, mostly wind-dispersed, seeds or spores. Consequently, epiphytes should colonize trees rapidly, which, in addition to atmospheric sensitivity and short life cycles, make epiphytes suitable climate change indicators. In this study, we assess the impact of climate change on Taiwanese epiphytes using a modeling approach.</code>                                                                                                                                      |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### allnli

* Dataset: [allnli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                                          | positive                                                                                        | negative                                                                                        |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          | string                                                                                          |
  | details | <ul><li>min: 15 characters</li><li>mean: 72.82 characters</li><li>max: 300 characters</li></ul> | <ul><li>min: 12 characters</li><li>mean: 34.11 characters</li><li>max: 126 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 36.38 characters</li><li>max: 121 characters</li></ul> |
* Samples:
  | anchor                                                                                                                                                                         | positive                                                    | negative                                                |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
  | <code>Two women are embracing while holding to go packages.</code>                                                                                                             | <code>Two woman are holding packages.</code>                | <code>The men are fighting outside a deli.</code>       |
  | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code>        |
  | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code>                                                                    | <code>A man selling donuts to a customer.</code>            | <code>A woman drinks her coffee in a small cafe.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### paq

* Dataset: [paq](https://huggingface.co/datasets/sentence-transformers/paq) at [74601d8](https://huggingface.co/datasets/sentence-transformers/paq/tree/74601d8d731019bc9c627ffc4271cdd640e1e748)
* Size: 64,371,441 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                          | answer                                                                                            |
  |:--------|:-----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                            |
  | details | <ul><li>min: 25 characters</li><li>mean: 51.3 characters</li><li>max: 108 characters</li></ul> | <ul><li>min: 504 characters</li><li>mean: 623.09 characters</li><li>max: 835 characters</li></ul> |
* Samples:
  | query                                                          | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
  |:---------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>when did season 3 of the voice brasil start</code>       | <code>The Voice Brasil (season 3) The third season of "The Voice Brasil", premiered on Rede Globo on September 18, 2014 in the 10:30 p.m. (BRT/AMT) slot immediately following the primetime telenovela "Império". The 22- and 24-year-old sertanejo duo Danilo Reis e Rafael won the competition on December 25, 2014 with 43% of the votes cast. This marked Lulu Santos' first win as a coach, the first stolen artist to win a Brazilian season of "The Voice", and the first time in any "The Voice" franchise that a duo won the competition. Online applications for "The Voice Brasil" were open on</code>           |
  | <code>when did the little ranger first come out</code>         | <code>Gang" theme song was an instrumental medley of "London Bridge", "Here We Go Round the Mulberry Bush" and "The Farmer in the Dell". It remained in use until the series ended in 1944. The Little Ranger The Little Ranger is a 1938 "Our Gang" short comedy film directed by Gordon Douglas. It was the 169th short in the "Our Gang" series, and the first produced by Metro-Goldwyn-Mayer, who purchased the rights to the series from creator Hal Roach. Snubbed by his girlfriend Darla, Alfalfa accepts the invitation of tomboyish Muggsy to attend the local picture show. While watching the adventures</code> |
  | <code>what is the name of rachel's sister in ninjaaiden</code> | <code>her among ten female characters who have never been featured on their games' cover arts, Samir Torres of VentureBeat wrote that while "Team Ninja sexualy exploits all of their female characters, yet Rachel somehow got axed from every modern "Ninja Gaiden" box art." Rachel (Ninja Gaiden) In 2004's "Ninja Gaiden", Rachel is a fiend hunter whom the game's protagonist Ryu Hayabusa meets in the Holy Vigoor Empire, where she is on a mission to destroy the fiends, as well as find her missing sister, Alma, who has become a Greater Fiend. Soon after they first meet, she is captured but</code>         |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16384
- `per_device_eval_batch_size`: 4096
- `learning_rate`: 0.2
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16384
- `per_device_eval_batch_size`: 4096
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.2
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | gooaq loss | msmarco loss | s2orc loss | allnli loss | paq loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:----------:|:------------:|:----------:|:-----------:|:--------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|
| 0.0002 | 1    | 43.5181       | -          | -            | -          | -           | -        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.0597 | 250  | 17.804        | 2.1081     | 12.8291      | 10.8194    | 14.2895     | 5.3792   | 0.3202                          | 0.5446                     | 0.6721                   | 0.3176                      | 0.6222                      | 0.3867                     | 0.3022                      | 0.3952                | 0.8741                            | 0.2474                     | 0.3986                     | 0.5913                     | 0.5463                        | 0.4783                       |
| 0.1195 | 500  | 9.6842        | 1.6991     | 12.2374      | 10.6084    | 13.9790     | 4.7183   | 0.3148                          | 0.5759                     | 0.7063                   | 0.3640                      | 0.6250                      | 0.3846                     | 0.2832                      | 0.4168                | 0.8659                            | 0.2537                     | 0.3744                     | 0.5732                     | 0.5509                        | 0.4837                       |
| 0.1792 | 750  | 8.7691        | 1.6922     | 12.0631      | 10.3970    | 12.4485     | 4.4473   | 0.3496                          | 0.5664                     | 0.7157                   | 0.3179                      | 0.6585                      | 0.3826                     | 0.2934                      | 0.4040                | 0.8782                            | 0.2523                     | 0.3845                     | 0.5962                     | 0.5502                        | 0.4884                       |
| 0.2389 | 1000 | 8.606         | 1.6685     | 11.7765      | 10.2828    | 12.4139     | 4.2823   | 0.3509                          | 0.5636                     | 0.7026                   | 0.3249                      | 0.6562                      | 0.4049                     | 0.3123                      | 0.4174                | 0.8673                            | 0.2657                     | 0.3969                     | 0.5582                     | 0.5514                        | 0.4902                       |
| 0.2987 | 1250 | 8.4178        | 1.6072     | 11.7581      | 9.2590     | 12.8865     | 4.2231   | 0.3341                          | 0.5587                     | 0.7103                   | 0.3354                      | 0.6534                      | 0.4033                     | 0.3116                      | 0.4294                | 0.8663                            | 0.2718                     | 0.4048                     | 0.5891                     | 0.5466                        | 0.4934                       |
| 0.3584 | 1500 | 8.1084        | 1.6751     | 11.8237      | 9.8291     | 11.5805     | 4.1559   | 0.3345                          | 0.5668                     | 0.7094                   | 0.3287                      | 0.6535                      | 0.3948                     | 0.3311                      | 0.4098                | 0.8632                            | 0.2649                     | 0.4171                     | 0.5913                     | 0.5514                        | 0.4936                       |
| 0.4182 | 1750 | 7.9489        | 1.5858     | 11.8367      | 9.8385     | 13.0328     | 4.0980   | 0.3543                          | 0.5464                     | 0.6984                   | 0.3158                      | 0.6582                      | 0.3862                     | 0.3233                      | 0.4201                | 0.8665                            | 0.2743                     | 0.3924                     | 0.5909                     | 0.5577                        | 0.4911                       |
| 0.4779 | 2000 | 8.2594        | 1.6123     | 11.8052      | 9.9075     | 11.3651     | 4.0788   | 0.3491                          | 0.5551                     | 0.7208                   | 0.3235                      | 0.6570                      | 0.4058                     | 0.3220                      | 0.4215                | 0.8801                            | 0.2629                     | 0.4143                     | 0.5998                     | 0.5514                        | 0.4972                       |
| 0.5376 | 2250 | 8.299         | 1.6416     | 11.7180      | 9.9462     | 10.7895     | 4.0423   | 0.3636                          | 0.5582                     | 0.7071                   | 0.3048                      | 0.6649                      | 0.3951                     | 0.3248                      | 0.4316                | 0.8804                            | 0.2561                     | 0.4252                     | 0.6036                     | 0.5484                        | 0.4972                       |
| 0.5974 | 2500 | 7.7807        | 1.6518     | 11.7898      | 9.9235     | 11.1670     | 4.0001   | 0.3639                          | 0.5556                     | 0.7288                   | 0.3148                      | 0.6525                      | 0.3979                     | 0.3178                      | 0.4436                | 0.8860                            | 0.2593                     | 0.4208                     | 0.5935                     | 0.5581                        | 0.4994                       |
| 0.6571 | 2750 | 7.8997        | 1.5797     | 11.6813      | 9.5124     | 11.4893     | 3.9633   | 0.3465                          | 0.5562                     | 0.7084                   | 0.3101                      | 0.6631                      | 0.4102                     | 0.3194                      | 0.4410                | 0.8805                            | 0.2566                     | 0.4261                     | 0.5983                     | 0.5552                        | 0.4978                       |
| 0.7168 | 3000 | 8.0204        | 1.5620     | 11.6746      | 9.6655     | 10.8783     | 3.9539   | 0.3439                          | 0.5569                     | 0.7295                   | 0.3173                      | 0.6606                      | 0.4129                     | 0.3180                      | 0.4521                | 0.8888                            | 0.2576                     | 0.4012                     | 0.6065                     | 0.5560                        | 0.5001                       |
| 0.7766 | 3250 | 8.0225        | 1.4596     | 11.5664      | 9.6954     | 10.9838     | 3.9493   | 0.3496                          | 0.5626                     | 0.7239                   | 0.3330                      | 0.6551                      | 0.4197                     | 0.3129                      | 0.4491                | 0.8893                            | 0.2726                     | 0.4061                     | 0.6103                     | 0.5555                        | 0.5031                       |
| 0.8363 | 3500 | 7.6933        | 1.5522     | 11.6974      | 9.1753     | 11.2026     | 3.9082   | 0.3581                          | 0.5570                     | 0.7170                   | 0.3216                      | 0.6492                      | 0.4018                     | 0.3204                      | 0.4360                | 0.8841                            | 0.2675                     | 0.4031                     | 0.6052                     | 0.5553                        | 0.4982                       |
| 0.8961 | 3750 | 7.711         | 1.5267     | 11.6615      | 9.4673     | 11.3195     | 3.8847   | 0.3563                          | 0.5613                     | 0.7162                   | 0.3265                      | 0.6497                      | 0.4109                     | 0.3253                      | 0.4384                | 0.8713                            | 0.2657                     | 0.4195                     | 0.6058                     | 0.5566                        | 0.5003                       |
| 0.9558 | 4000 | 7.8549        | 1.5300     | 11.6244      | 9.1383     | 11.0781     | 3.8785   | 0.3533                          | 0.5609                     | 0.7153                   | 0.3285                      | 0.6528                      | 0.4069                     | 0.3250                      | 0.4382                | 0.8744                            | 0.2642                     | 0.4068                     | 0.5961                     | 0.5595                        | 0.4986                       |
| 1.0    | 4185 | -             | -          | -            | -          | -           | -        | 0.3503                          | 0.5612                     | 0.7223                   | 0.3321                      | 0.6508                      | 0.4069                     | 0.3251                      | 0.4285                | 0.8744                            | 0.2658                     | 0.4064                     | 0.6054                     | 0.5595                        | 0.4991                       |


### Framework Versions
- Python: 3.10.15
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.4.1
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->