File size: 99,851 Bytes
7a6cb0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:68534726
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: how to sign legal documents as power of attorney?
sentences:
- 'After the principal''s name, write “by” and then sign your own name. Under or
after the signature line, indicate your status as POA by including any of the
following identifiers: as POA, as Agent, as Attorney in Fact or as Power of Attorney.'
- Most earthquakes occur along the edge of the oceanic and continental plates. The
earth's crust (the outer layer of the planet) is made up of several pieces, called
plates. The plates under the oceans are called oceanic plates and the rest are
continental plates.
- Go to System -> VDOM -> VDOM2 and select 'Delete'. This VDOM is now successfully
removed from the configuration.
- source_sentence: what is upwork
sentences:
- Upwork, formerly Elance-oDesk, is a global freelancing platform where businesses
and independent professionals connect and collaborate remotely.In 2015, Elance-oDesk
was rebranded as Upwork. It is based out of Mountain View and San Francisco, California.pwork
has nine million registered freelancers and four million registered clients. Three
million jobs are posted annually, worth a total of $1 billion USD, making it the
world's largest freelancer marketplace.
- Upwork, formerly Elance-oDesk, is a global freelancing platform where businesses
and independent professionals connect and collaborate remotely.In 2015, Elance-oDesk
was rebranded as Upwork. It is based out of Mountain View and San Francisco, California.pwork
has nine million registered freelancers and four million registered clients. Three
million jobs are posted annually, worth a total of $1 billion USD, making it the
world's largest freelancer marketplace.
- 'That is, while fructose consumption may increase uric acid levels, to actually
precipitate a gout attack, you need to deviate from the narrow band of normal
blood pH range: 7.35 to 7.45. Ideally you wanna be at 7.45 or slightly above.'
- source_sentence: how many km is a mile
sentences:
- Periodontal disease is a bacterial infection of the gums and bone that if not
treated, can cause you to lose your teeth. Medical research is now showing that
these bacteria in your mouth can also travel through your bloodstream into other
organs in the body.
- Master the formula for converting kilometers to miles. 1 kilometer is equal to
0.621371 miles (often shortened to .62).1 mile is equal to 1.609344 kilometers.
Thus, to convert kilometers to miles, simply multiply the number of kilometers
by 0.62137. For example, let's say you start with 5 kilometers. People are often
interested in this conversion because they want to know how many miles are in
a 5K run. The formula is 5 X 0.62137= 3.1 miles.
- To find out how many kilometers in miles, multiply by this factor or simply use
the converter below. 1 Mile = 1.609344 Kilometers. Mile is an imperial and US
customary length unit and equals to 5280 feet. The abbreviation is mi. Kilometer
is a metric length unit and equals to 1000 meters.
- source_sentence: A group of children walking on a trail.
sentences:
- The man is performing.
- Children are walking.
- The people are adults.
- source_sentence: A boy with a basketballs glowers at the camera.
sentences:
- The boy is smiling
- The boy scowls
- Surfer in red catches a wave.
datasets:
- sentence-transformers/gooaq
- sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
- sentence-transformers/s2orc
- sentence-transformers/all-nli
- sentence-transformers/paq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: '[REPRODUCE] Static Embeddings with BERT uncased tokenizer finetuned on various
datasets'
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: cosine_accuracy@1
value: 0.32
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.54
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.64
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.82
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.32
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.152
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.11199999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.15666666666666665
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.25
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.31633333333333336
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.44133333333333336
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.35027529831718174
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4537698412698412
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2754610667422747
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: cosine_accuracy@1
value: 0.64
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.88
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.92
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.94
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.64
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.6066666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.5479999999999999
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.45399999999999996
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.05820050708225643
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.1660478879214754
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2233296888728599
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.32642161484749216
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5611886908023029
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7551904761904763
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.42159733554382045
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: cosine_accuracy@1
value: 0.54
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.84
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.94
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.54
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2733333333333334
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5066666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7566666666666667
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8033333333333332
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9033333333333333
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7223300246075101
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6857460317460319
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6591296848555135
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: cosine_accuracy@1
value: 0.22
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.44
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.64
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.22
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18666666666666668
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.132
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09799999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12688888888888888
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.29007936507936505
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3347460317460317
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.453015873015873
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.33206103177846985
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.34974603174603175
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2723064374777477
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: cosine_accuracy@1
value: 0.66
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.86
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.94
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.66
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.35999999999999993
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.264
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.14799999999999996
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.33
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.54
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.66
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.74
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6507660730204244
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.746690476190476
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5743825107321581
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.16
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.44
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.54
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.66
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.16
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10800000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.066
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.16
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.44
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.54
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.66
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4069260774532657
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3269126984126984
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.34104660879940385
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: cosine_accuracy@1
value: 0.4
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.54
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.34666666666666673
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.3
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.24400000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.06140064224956239
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.09381944627241434
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.11465220470723159
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.13758064454249494
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3251344168353932
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.49083333333333345
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.15346080343511273
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.2
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.46
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.58
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.68
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15333333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12000000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07400000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.44
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.55
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.67
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4284752232212853
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3555714285714285
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.35954687250943856
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: cosine_accuracy@1
value: 0.8
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.92
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.96
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.98
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.35999999999999993
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.23999999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.12799999999999997
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7106666666666667
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8653333333333333
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9226666666666667
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9593333333333334
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.874423773707081
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8666666666666666
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8354028527028526
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: cosine_accuracy@1
value: 0.28
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.52
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.62
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.72
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.28
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.22666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.184
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.14
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.059666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.1416666666666667
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.18966666666666665
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2886666666666667
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2657817193581118
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4188571428571429
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.20270708890067454
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: cosine_accuracy@1
value: 0.12
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.48
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.68
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15999999999999998
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.068
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.48
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.68
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4064179360568565
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.31785714285714284
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.33454708384798976
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: cosine_accuracy@1
value: 0.52
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.64
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.68
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.74
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.52
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.22
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14400000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.485
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.61
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.655
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.72
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6053823991819648
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5862222222222221
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5721097562068183
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: cosine_accuracy@1
value: 0.5918367346938775
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9183673469387755
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9795918367346939
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5918367346938775
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5850340136054422
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.6000000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.5204081632653061
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0405610423291237
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.12039267252775386
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.20296687044371778
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3313283589291373
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5594653746925154
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.749514091350826
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4414984325557448
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.41937205651491377
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6475667189952904
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7168916797488225
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8030769230769231
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.41937205651491377
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2942333856619571
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.23784615384615387
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.17172370486656197
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.23120905747819215
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.399538926035975
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4702072919822955
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5623856275385894
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4991252337717202
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5464290448780245
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.41870742571611924
name: Cosine Map@100
---
# [REPRODUCE] Static Embeddings with BERT uncased tokenizer finetuned on various datasets
This is a [sentence-transformers](https://www.SBERT.net) model trained on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq), [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1), [s2orc](https://huggingface.co/datasets/sentence-transformers/s2orc), [allnli](https://huggingface.co/datasets/sentence-transformers/all-nli) and [paq](https://huggingface.co/datasets/sentence-transformers/paq) datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** inf tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1)
- [s2orc](https://huggingface.co/datasets/sentence-transformers/s2orc)
- [allnli](https://huggingface.co/datasets/sentence-transformers/all-nli)
- [paq](https://huggingface.co/datasets/sentence-transformers/paq)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): StaticEmbedding(
(embedding): EmbeddingBag(30522, 1024, mode='mean')
)
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("carlfeynman/reproduce-static-retrieval-mrl-en-v1")
# Run inference
sentences = [
'A boy with a basketballs glowers at the camera.',
'The boy scowls',
'The boy is smiling',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
| cosine_accuracy@1 | 0.32 | 0.64 | 0.54 | 0.22 | 0.66 | 0.16 | 0.4 | 0.2 | 0.8 | 0.28 | 0.12 | 0.52 | 0.5918 |
| cosine_accuracy@3 | 0.54 | 0.88 | 0.82 | 0.44 | 0.82 | 0.44 | 0.54 | 0.46 | 0.92 | 0.52 | 0.48 | 0.64 | 0.9184 |
| cosine_accuracy@5 | 0.64 | 0.92 | 0.84 | 0.5 | 0.86 | 0.54 | 0.6 | 0.58 | 0.96 | 0.62 | 0.6 | 0.68 | 0.9796 |
| cosine_accuracy@10 | 0.82 | 0.94 | 0.94 | 0.64 | 0.94 | 0.66 | 0.7 | 0.68 | 0.98 | 0.72 | 0.68 | 0.74 | 1.0 |
| cosine_precision@1 | 0.32 | 0.64 | 0.54 | 0.22 | 0.66 | 0.16 | 0.4 | 0.2 | 0.8 | 0.28 | 0.12 | 0.52 | 0.5918 |
| cosine_precision@3 | 0.2 | 0.6067 | 0.2733 | 0.1867 | 0.36 | 0.1467 | 0.3467 | 0.1533 | 0.36 | 0.2267 | 0.16 | 0.22 | 0.585 |
| cosine_precision@5 | 0.152 | 0.548 | 0.18 | 0.132 | 0.264 | 0.108 | 0.3 | 0.12 | 0.24 | 0.184 | 0.12 | 0.144 | 0.6 |
| cosine_precision@10 | 0.112 | 0.454 | 0.1 | 0.098 | 0.148 | 0.066 | 0.244 | 0.074 | 0.128 | 0.14 | 0.068 | 0.08 | 0.5204 |
| cosine_recall@1 | 0.1567 | 0.0582 | 0.5067 | 0.1269 | 0.33 | 0.16 | 0.0614 | 0.19 | 0.7107 | 0.0597 | 0.12 | 0.485 | 0.0406 |
| cosine_recall@3 | 0.25 | 0.166 | 0.7567 | 0.2901 | 0.54 | 0.44 | 0.0938 | 0.44 | 0.8653 | 0.1417 | 0.48 | 0.61 | 0.1204 |
| cosine_recall@5 | 0.3163 | 0.2233 | 0.8033 | 0.3347 | 0.66 | 0.54 | 0.1147 | 0.55 | 0.9227 | 0.1897 | 0.6 | 0.655 | 0.203 |
| cosine_recall@10 | 0.4413 | 0.3264 | 0.9033 | 0.453 | 0.74 | 0.66 | 0.1376 | 0.67 | 0.9593 | 0.2887 | 0.68 | 0.72 | 0.3313 |
| **cosine_ndcg@10** | **0.3503** | **0.5612** | **0.7223** | **0.3321** | **0.6508** | **0.4069** | **0.3251** | **0.4285** | **0.8744** | **0.2658** | **0.4064** | **0.6054** | **0.5595** |
| cosine_mrr@10 | 0.4538 | 0.7552 | 0.6857 | 0.3497 | 0.7467 | 0.3269 | 0.4908 | 0.3556 | 0.8667 | 0.4189 | 0.3179 | 0.5862 | 0.7495 |
| cosine_map@100 | 0.2755 | 0.4216 | 0.6591 | 0.2723 | 0.5744 | 0.341 | 0.1535 | 0.3595 | 0.8354 | 0.2027 | 0.3345 | 0.5721 | 0.4415 |
#### Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.4194 |
| cosine_accuracy@3 | 0.6476 |
| cosine_accuracy@5 | 0.7169 |
| cosine_accuracy@10 | 0.8031 |
| cosine_precision@1 | 0.4194 |
| cosine_precision@3 | 0.2942 |
| cosine_precision@5 | 0.2378 |
| cosine_precision@10 | 0.1717 |
| cosine_recall@1 | 0.2312 |
| cosine_recall@3 | 0.3995 |
| cosine_recall@5 | 0.4702 |
| cosine_recall@10 | 0.5624 |
| **cosine_ndcg@10** | **0.4991** |
| cosine_mrr@10 | 0.5464 |
| cosine_map@100 | 0.4187 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 18 characters</li><li>mean: 43.23 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 55 characters</li><li>mean: 253.36 characters</li><li>max: 371 characters</li></ul> |
* Samples:
| question | answer |
|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the difference between broilers and layers?</code> | <code>An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.</code> |
| <code>what is the difference between chronological order and spatial order?</code> | <code>As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.</code> |
| <code>is kamagra same as viagra?</code> | <code>Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
#### msmarco
* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 502,939 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 11 characters</li><li>mean: 33.26 characters</li><li>max: 197 characters</li></ul> | <ul><li>min: 96 characters</li><li>mean: 356.24 characters</li><li>max: 1006 characters</li></ul> | <ul><li>min: 68 characters</li><li>mean: 327.52 characters</li><li>max: 995 characters</li></ul> |
* Samples:
| query | positive | negative |
|:---------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when was the sullivan acts</code> | <code>Sullivan Act Tim Sullivan, a major Irish criminal passed the Sullivan Act in 1911 to help his constituents rob strangers or to help them against Italian incomers. That is the crux of story that goes with a very early gun control law.</code> | <code>Sullivan Act Tim Sullivan, a major Irish criminal passed the Sullivan Act in 1911 to help his constituents rob strangers or to help them against Italian incomers. That is the crux of story that goes with a very early gun control law.</code> |
| <code>can lavender grow indoors</code> | <code>Growing Lavender Indoors. People ALWAYS ask if you can grow lavender indoors. Well, you can, but most Lavender does best outside. Here is our winter experiment to show you what it would look like. This is one of our 4 Lavender Babies from Fall 2010. Our test specimen is L. x intermedia 'Grosso'.</code> | <code>Lavender can be grown indoors with a bit of effort to keep it in the conditions it loves to thrive. First off begin with choosing a variety that is better able to tolerate the conditions inside a home. To successfully grow Lavender indoors you need to create optimal growing conditions which is hard to do inside a house.</code> |
| <code>what kind of barley do you malt</code> | <code>Barley is a wonderfully versatile cereal grain with a rich nutlike flavor and an appealing chewy, pasta-like consistency. Its appearance resembles wheat berries, although it is slightly lighter in color. Sprouted barley is naturally high in maltose, a sugar that serves as the basis for both malt syrup sweetener.</code> | <code>Specialty grains that can be used in this way are usually barley, malted or unmalted, that has been treated differently at the malting company. Crystal malt is one of the specialty grains. It is available in a whole range of colors, from 20 to 120 Lovibond. Crystal malt is malted barley that is heated while wet.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
#### s2orc
* Dataset: [s2orc](https://huggingface.co/datasets/sentence-transformers/s2orc) at [8cfc394](https://huggingface.co/datasets/sentence-transformers/s2orc/tree/8cfc394e83b2ebfcf38f90b508aea383df742439)
* Size: 90,000 training samples
* Columns: <code>title</code> and <code>abstract</code>
* Approximate statistics based on the first 1000 samples:
| | title | abstract |
|:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 31 characters</li><li>mean: 80.02 characters</li><li>max: 185 characters</li></ul> | <ul><li>min: 84 characters</li><li>mean: 635.31 characters</li><li>max: 1023 characters</li></ul> |
* Samples:
| title | abstract |
|:----------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Modeling Method of Flow Diversion of the Three Outlets in Jingjiang Reach Under Unsteady Flow Conditions</code> | <code>The Yangtze River Flood Protection Physical Model is built under the financial support of World Bank loan.Based on theoretical analysis and experimental study,a modeling method of flow diversion of the three outlets in Jingjiang Reach under unsteady flow conditions was established for the model.Validation tests under both steady and unsteady flow conditions manifested that with this modeling method,the experimental flow diversion proves to be consistent with that of the prototype and therefore meets the requirements for precision.Being validated,this modeling method has been applied to Yangtze River Flood Protection Physical Model to study the flood routing features in Jingjiang reach.</code> |
| <code>Enlightening on medical administration by clinical governance in British</code> | <code>Medical quality and safety were the responsibilities of medical system in view of British clinical governance. Medical regulation institutes were considered to be built and be authorized regulation rights. British medical administration was introduced and its enlightening in China was mentioned.</code> |
| <code>APPLICATION OF A FUZZY MULTI-CRITERIA DECISION-MAKING MODEL FOR SHIPPING COMPANY PERFORMANCE EVALUATION</code> | <code>Combining fuzzy set theory, Analytic Hierarchy Process (AHP) and concept of entropy, a fuzzy Multiple Criteria Decision-Making (MCDM) model for shipping company performance evaluation is proposed. First, the AHP is used to construct subjective weights for all criteria and sub-criteria. Then, linguistic values characterized by triangular fuzzy numbers and trapezoidal fuzzy numbers are used to denote the evaluation values of all alternatives with respect to various subjective and objective criteria. Finally, the aggregation fuzzy assessment of different shipping companies is ranked to determine the best selection. Utilizing this fuzzy MCDM model, the decision-maker's fuzzy assessment and the trade-off between various evaluations criteria can be taken into account in the aggregation process, thus ensuring more effective and accurate decision-making.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
#### allnli
* Dataset: [allnli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 557,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 18 characters</li><li>mean: 34.88 characters</li><li>max: 193 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 46.49 characters</li><li>max: 181 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 50.47 characters</li><li>max: 204 characters</li></ul> |
* Samples:
| anchor | positive | negative |
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
#### paq
* Dataset: [paq](https://huggingface.co/datasets/sentence-transformers/paq) at [74601d8](https://huggingface.co/datasets/sentence-transformers/paq/tree/74601d8d731019bc9c627ffc4271cdd640e1e748)
* Size: 64,371,441 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 25 characters</li><li>mean: 50.56 characters</li><li>max: 104 characters</li></ul> | <ul><li>min: 509 characters</li><li>mean: 620.96 characters</li><li>max: 773 characters</li></ul> |
* Samples:
| query | answer |
|:----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>in veetla visheshanga ganesh is the husband of</code> | <code>Veetla Visheshanga a song which reminds Ganga's memory. She is actually not Ganga but Gowri and her lover is the groom named Ganesh. When both were about to marry they were stopped by some goons because of which Gowri fell from the mountain but survived with injuries. Gopal who found the truth brought Ganesh to unite them. Gopal insists Gowri to marry Ganesh as both of them are lovers to which Gowri unwillingly accepts. But while Ganesh tries to tie the Mangal Sutra, Gowri stops him and she goes to Gopal saying that he may not need her but she needs him</code> |
| <code>when did simon property group became a publicly traded company</code> | <code>of the S&P 100. Simon Property Group has been the subject of several lawsuits and investigations regarding civil rights and discrimination. Simon Property Group was formed in 1993 when the majority of the shopping center interests of Melvin Simon & Associates became a publicly traded company. Melvin Simon & Associates, owned by brothers Melvin Simon and Herbert Simon, was founded in 1960 in Indianapolis, Indiana, and had long been one of the top shopping center developers in the United States. In 1996, Simon DeBartolo Group was created when Simon Property merged with former rival DeBartolo Realty Corp. This was shortly</code> |
| <code>what was the nationality of antoine faivre</code> | <code>Theosophy (Boehmian) below. "Theosophy": The scholar of esotericism Wouter Hanegraaff described Christian theosophy as "one of the major currents in the history of Western esotericism". Christian theosophy is an under-researched area; a general history of it has never been written. The French scholar Antoine Faivre had a specific interest in the theosophers and illuminists of the eighteenth and nineteenth centuries. He wrote his doctoral thesis on Karl von Eckartshausen and Christian theosophy. Scholars of esotericism have argued that Faivre's definition of Western esotericism relies on his own specialist focus on Christian theosophy, Renaissance Hermeticism, and Romantic "Naturphilosophie" and therefore creates an "ideal"</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Datasets
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 18 characters</li><li>mean: 43.17 characters</li><li>max: 98 characters</li></ul> | <ul><li>min: 51 characters</li><li>mean: 254.12 characters</li><li>max: 360 characters</li></ul> |
* Samples:
| question | answer |
|:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how do i program my directv remote with my tv?</code> | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code> |
| <code>are rodrigues fruit bats nocturnal?</code> | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code> |
| <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
#### msmarco
* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 502,939 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 10 characters</li><li>mean: 33.36 characters</li><li>max: 137 characters</li></ul> | <ul><li>min: 67 characters</li><li>mean: 347.87 characters</li><li>max: 906 characters</li></ul> | <ul><li>min: 57 characters</li><li>mean: 318.18 characters</li><li>max: 906 characters</li></ul> |
* Samples:
| query | positive | negative |
|:-------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>is cabinet refacing worth the cost?</code> | <code>Fans of refacing say this mini-makeover can give a kitchen a whole new look at a much lower cost than installing all-new cabinets. Cabinet refacing can save up to 50 percent compared to the cost of replacing, says Cheryl Catalano, owner of Kitchen Solvers, a cabinet refacing franchise in Napierville, Illinois. From.</code> | <code>Most cabinet refacing projects cost about $4,000 to $10,000. The price varies based on the materials you select and the size and configuration of your kitchen. Wood veneer doors, for example, will cost less than solid wood doors.</code> |
| <code>is the fovea ethmoidalis a bone</code> | <code>Ethmoid bone/fovea ethmoidalis. The medial portion of the ethmoid bone is a cruciate membranous bone composed of the crista galli, cribriform plate, and perpendicular ethmoidal plate. The crista is a thick piece of bone, shaped like a âcock's comb,â that projects intracranially and attaches to the falx cerebri.</code> | <code>Ethmoid bone/fovea ethmoidalis. The medial portion of the ethmoid bone is a cruciate membranous bone composed of the crista galli, cribriform plate, and perpendicular ethmoidal plate. The crista is a thick piece of bone, shaped like a âcock's comb,â that projects intracranially and attaches to the falx cerebri.</code> |
| <code>average pitches per inning</code> | <code>The likelihood of a pitcher completing nine innings if he throws an average of 14 pitches or less per inning is reinforced by the totals of the 89 games in which pitchers did actually complete nine innings of work.</code> | <code>The likelihood of a pitcher completing nine innings if he throws an average of 14 pitches or less per inning is reinforced by the totals of the 89 games in which pitchers did actually complete nine innings of work.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
#### s2orc
* Dataset: [s2orc](https://huggingface.co/datasets/sentence-transformers/s2orc) at [8cfc394](https://huggingface.co/datasets/sentence-transformers/s2orc/tree/8cfc394e83b2ebfcf38f90b508aea383df742439)
* Size: 10,000 evaluation samples
* Columns: <code>title</code> and <code>abstract</code>
* Approximate statistics based on the first 1000 samples:
| | title | abstract |
|:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 31 characters</li><li>mean: 80.04 characters</li><li>max: 198 characters</li></ul> | <ul><li>min: 96 characters</li><li>mean: 653.93 characters</li><li>max: 1023 characters</li></ul> |
* Samples:
| title | abstract |
|:-------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Screen Printing Ink Film Thickness Analysis of the Passive RFID Tag Antenna</code> | <code>The relationship between the screen mesh and the theoretical and practical ink film thickness was analyzed based on the main influencing factors of the ink film thickness by screen printing.A calculation model for the ink thickness was established based on the screen under static and compressive deformation.The relation curve between the screen mesh and the ink film thickness was fitted and the suitable printing craft parameter was chosen to print two kinds of RFID tag antennas.The fluctuation of the antenna resistance was analyzed to demonstrate the reliability of the passive RFID tag antenna manufactured by screen printing technology.</code> |
| <code>Subclinical organ damage and cardiovascular risk prediction</code> | <code>AbstractTraditional cardiovascular risk factors have poor prognostic value for individuals and screening for subclinical organ damage has been recommended in hypertension in recent guidelines. The aim of this review was to investigate the clinical impact of the additive prognostic information provided by measuring subclinical organ damage. We have (i) reviewed recent studies linking markers of subclinical organ damage in the heart, blood vessels and kidney to cardiovascular risk; (ii) discussed the evidence for improvement in cardiovascular risk prediction using markers of subclinical organ damage; (iii) investigated which and how many markers to measure and (iv) finally discussed whether measuring subclinical organ damage provided benefits beyond risk prediction. In conclusion, more studies and if possible randomized studies are needed to investigate (i) the importance of markers of subclinical organ damage for risk discrimination, calibration and reclassification; and (ii) the econom...</code> |
| <code>A Novel Approach to Simulate Climate Change Impacts on Vascular Epiphytes: Case Study in Taiwan</code> | <code>In the wet tropics, epiphytes form a conspicuous layer in the forest canopy, support abundant coexisting biota, and are known to have a critical influence on forest hydrology and nutrient cycling. Since canopy-dwelling plants have no vascular connection to the ground or their host plants, they are likely more sensitive to environmental changes than their soil-rooted counterparts, subsequently regarded as one of the groups most vulnerable to global climate change. Epiphytes have adapted to life in highly dynamic forest canopies by producing many, mostly wind-dispersed, seeds or spores. Consequently, epiphytes should colonize trees rapidly, which, in addition to atmospheric sensitivity and short life cycles, make epiphytes suitable climate change indicators. In this study, we assess the impact of climate change on Taiwanese epiphytes using a modeling approach.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
#### allnli
* Dataset: [allnli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 15 characters</li><li>mean: 72.82 characters</li><li>max: 300 characters</li></ul> | <ul><li>min: 12 characters</li><li>mean: 34.11 characters</li><li>max: 126 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 36.38 characters</li><li>max: 121 characters</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
#### paq
* Dataset: [paq](https://huggingface.co/datasets/sentence-transformers/paq) at [74601d8](https://huggingface.co/datasets/sentence-transformers/paq/tree/74601d8d731019bc9c627ffc4271cdd640e1e748)
* Size: 64,371,441 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 25 characters</li><li>mean: 51.3 characters</li><li>max: 108 characters</li></ul> | <ul><li>min: 504 characters</li><li>mean: 623.09 characters</li><li>max: 835 characters</li></ul> |
* Samples:
| query | answer |
|:---------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when did season 3 of the voice brasil start</code> | <code>The Voice Brasil (season 3) The third season of "The Voice Brasil", premiered on Rede Globo on September 18, 2014 in the 10:30 p.m. (BRT/AMT) slot immediately following the primetime telenovela "Império". The 22- and 24-year-old sertanejo duo Danilo Reis e Rafael won the competition on December 25, 2014 with 43% of the votes cast. This marked Lulu Santos' first win as a coach, the first stolen artist to win a Brazilian season of "The Voice", and the first time in any "The Voice" franchise that a duo won the competition. Online applications for "The Voice Brasil" were open on</code> |
| <code>when did the little ranger first come out</code> | <code>Gang" theme song was an instrumental medley of "London Bridge", "Here We Go Round the Mulberry Bush" and "The Farmer in the Dell". It remained in use until the series ended in 1944. The Little Ranger The Little Ranger is a 1938 "Our Gang" short comedy film directed by Gordon Douglas. It was the 169th short in the "Our Gang" series, and the first produced by Metro-Goldwyn-Mayer, who purchased the rights to the series from creator Hal Roach. Snubbed by his girlfriend Darla, Alfalfa accepts the invitation of tomboyish Muggsy to attend the local picture show. While watching the adventures</code> |
| <code>what is the name of rachel's sister in ninjaaiden</code> | <code>her among ten female characters who have never been featured on their games' cover arts, Samir Torres of VentureBeat wrote that while "Team Ninja sexualy exploits all of their female characters, yet Rachel somehow got axed from every modern "Ninja Gaiden" box art." Rachel (Ninja Gaiden) In 2004's "Ninja Gaiden", Rachel is a fiend hunter whom the game's protagonist Ryu Hayabusa meets in the Holy Vigoor Empire, where she is on a mission to destroy the fiends, as well as find her missing sister, Alma, who has become a Greater Fiend. Soon after they first meet, she is captured but</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16384
- `per_device_eval_batch_size`: 4096
- `learning_rate`: 0.2
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16384
- `per_device_eval_batch_size`: 4096
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.2
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | gooaq loss | msmarco loss | s2orc loss | allnli loss | paq loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:----------:|:------------:|:----------:|:-----------:|:--------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|
| 0.0002 | 1 | 43.5181 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0597 | 250 | 17.804 | 2.1081 | 12.8291 | 10.8194 | 14.2895 | 5.3792 | 0.3202 | 0.5446 | 0.6721 | 0.3176 | 0.6222 | 0.3867 | 0.3022 | 0.3952 | 0.8741 | 0.2474 | 0.3986 | 0.5913 | 0.5463 | 0.4783 |
| 0.1195 | 500 | 9.6842 | 1.6991 | 12.2374 | 10.6084 | 13.9790 | 4.7183 | 0.3148 | 0.5759 | 0.7063 | 0.3640 | 0.6250 | 0.3846 | 0.2832 | 0.4168 | 0.8659 | 0.2537 | 0.3744 | 0.5732 | 0.5509 | 0.4837 |
| 0.1792 | 750 | 8.7691 | 1.6922 | 12.0631 | 10.3970 | 12.4485 | 4.4473 | 0.3496 | 0.5664 | 0.7157 | 0.3179 | 0.6585 | 0.3826 | 0.2934 | 0.4040 | 0.8782 | 0.2523 | 0.3845 | 0.5962 | 0.5502 | 0.4884 |
| 0.2389 | 1000 | 8.606 | 1.6685 | 11.7765 | 10.2828 | 12.4139 | 4.2823 | 0.3509 | 0.5636 | 0.7026 | 0.3249 | 0.6562 | 0.4049 | 0.3123 | 0.4174 | 0.8673 | 0.2657 | 0.3969 | 0.5582 | 0.5514 | 0.4902 |
| 0.2987 | 1250 | 8.4178 | 1.6072 | 11.7581 | 9.2590 | 12.8865 | 4.2231 | 0.3341 | 0.5587 | 0.7103 | 0.3354 | 0.6534 | 0.4033 | 0.3116 | 0.4294 | 0.8663 | 0.2718 | 0.4048 | 0.5891 | 0.5466 | 0.4934 |
| 0.3584 | 1500 | 8.1084 | 1.6751 | 11.8237 | 9.8291 | 11.5805 | 4.1559 | 0.3345 | 0.5668 | 0.7094 | 0.3287 | 0.6535 | 0.3948 | 0.3311 | 0.4098 | 0.8632 | 0.2649 | 0.4171 | 0.5913 | 0.5514 | 0.4936 |
| 0.4182 | 1750 | 7.9489 | 1.5858 | 11.8367 | 9.8385 | 13.0328 | 4.0980 | 0.3543 | 0.5464 | 0.6984 | 0.3158 | 0.6582 | 0.3862 | 0.3233 | 0.4201 | 0.8665 | 0.2743 | 0.3924 | 0.5909 | 0.5577 | 0.4911 |
| 0.4779 | 2000 | 8.2594 | 1.6123 | 11.8052 | 9.9075 | 11.3651 | 4.0788 | 0.3491 | 0.5551 | 0.7208 | 0.3235 | 0.6570 | 0.4058 | 0.3220 | 0.4215 | 0.8801 | 0.2629 | 0.4143 | 0.5998 | 0.5514 | 0.4972 |
| 0.5376 | 2250 | 8.299 | 1.6416 | 11.7180 | 9.9462 | 10.7895 | 4.0423 | 0.3636 | 0.5582 | 0.7071 | 0.3048 | 0.6649 | 0.3951 | 0.3248 | 0.4316 | 0.8804 | 0.2561 | 0.4252 | 0.6036 | 0.5484 | 0.4972 |
| 0.5974 | 2500 | 7.7807 | 1.6518 | 11.7898 | 9.9235 | 11.1670 | 4.0001 | 0.3639 | 0.5556 | 0.7288 | 0.3148 | 0.6525 | 0.3979 | 0.3178 | 0.4436 | 0.8860 | 0.2593 | 0.4208 | 0.5935 | 0.5581 | 0.4994 |
| 0.6571 | 2750 | 7.8997 | 1.5797 | 11.6813 | 9.5124 | 11.4893 | 3.9633 | 0.3465 | 0.5562 | 0.7084 | 0.3101 | 0.6631 | 0.4102 | 0.3194 | 0.4410 | 0.8805 | 0.2566 | 0.4261 | 0.5983 | 0.5552 | 0.4978 |
| 0.7168 | 3000 | 8.0204 | 1.5620 | 11.6746 | 9.6655 | 10.8783 | 3.9539 | 0.3439 | 0.5569 | 0.7295 | 0.3173 | 0.6606 | 0.4129 | 0.3180 | 0.4521 | 0.8888 | 0.2576 | 0.4012 | 0.6065 | 0.5560 | 0.5001 |
| 0.7766 | 3250 | 8.0225 | 1.4596 | 11.5664 | 9.6954 | 10.9838 | 3.9493 | 0.3496 | 0.5626 | 0.7239 | 0.3330 | 0.6551 | 0.4197 | 0.3129 | 0.4491 | 0.8893 | 0.2726 | 0.4061 | 0.6103 | 0.5555 | 0.5031 |
| 0.8363 | 3500 | 7.6933 | 1.5522 | 11.6974 | 9.1753 | 11.2026 | 3.9082 | 0.3581 | 0.5570 | 0.7170 | 0.3216 | 0.6492 | 0.4018 | 0.3204 | 0.4360 | 0.8841 | 0.2675 | 0.4031 | 0.6052 | 0.5553 | 0.4982 |
| 0.8961 | 3750 | 7.711 | 1.5267 | 11.6615 | 9.4673 | 11.3195 | 3.8847 | 0.3563 | 0.5613 | 0.7162 | 0.3265 | 0.6497 | 0.4109 | 0.3253 | 0.4384 | 0.8713 | 0.2657 | 0.4195 | 0.6058 | 0.5566 | 0.5003 |
| 0.9558 | 4000 | 7.8549 | 1.5300 | 11.6244 | 9.1383 | 11.0781 | 3.8785 | 0.3533 | 0.5609 | 0.7153 | 0.3285 | 0.6528 | 0.4069 | 0.3250 | 0.4382 | 0.8744 | 0.2642 | 0.4068 | 0.5961 | 0.5595 | 0.4986 |
| 1.0 | 4185 | - | - | - | - | - | - | 0.3503 | 0.5612 | 0.7223 | 0.3321 | 0.6508 | 0.4069 | 0.3251 | 0.4285 | 0.8744 | 0.2658 | 0.4064 | 0.6054 | 0.5595 | 0.4991 |
### Framework Versions
- Python: 3.10.15
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.4.1
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |