carlesoctav commited on
Commit
6f31aa4
·
1 Parent(s): ee469c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -1
README.md CHANGED
@@ -1,6 +1,42 @@
 
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- # Evalution Metrics
4
 
5
  | Model | Mmarco Dev | | MrTyDi Test | | Miracal Test | |
6
  |-----------------------------------------|------------|----------------|-------------|----------------|--------------|----------------------------|
 
1
+ # Indobert Cross-Encoder
2
 
3
+ This is a Cross-Encoder model for ID that can be used for passage re-ranking. It was trained on the multilingual version of [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.
4
+
5
+ The model can be used for Information Retrieval: See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html).
6
+
7
+ ## Usage with SentenceTransformers
8
+
9
+ When you have [SentenceTransformers](https://www.sbert.net/) installed, you can use the model like this:
10
+ ```python
11
+ from sentence_transformers import CrossEncoder
12
+ model = CrossEncoder('model_name', max_length=512)
13
+ query = 'How many people live in Berlin?'
14
+ docs = ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.']
15
+ pairs = [(query, doc) for doc in docs]
16
+ scores = model.predict(pairs)
17
+ ```
18
+
19
+
20
+ ## Usage with Transformers
21
+ With the transformers library, you can use the model like this:
22
+
23
+ ```python
24
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
25
+ import torch
26
+
27
+ model = AutoModelForSequenceClassification.from_pretrained('model_name')
28
+ tokenizer = AutoTokenizer.from_pretrained('model_name')
29
+
30
+ features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
31
+
32
+ model.eval()
33
+ with torch.no_grad():
34
+ scores = model(**features).logits
35
+ print(scores)
36
+ ```
37
+
38
+ ## Performance
39
 
 
40
 
41
  | Model | Mmarco Dev | | MrTyDi Test | | Miracal Test | |
42
  |-----------------------------------------|------------|----------------|-------------|----------------|--------------|----------------------------|