---
library_name: transformers
language:
- he
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: he-cantillation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# he-cantillation

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0127
- Wer: 31.4035
- Avg Precision Exact: 0.5775
- Avg Recall Exact: 0.5799
- Avg F1 Exact: 0.5786
- Avg Precision Letter Shift: 0.5795
- Avg Recall Letter Shift: 0.5829
- Avg F1 Letter Shift: 0.5809
- Avg Precision Word Level: 0.5836
- Avg Recall Word Level: 0.5883
- Avg F1 Word Level: 0.5854
- Avg Precision Word Shift: 0.6875
- Avg Recall Word Shift: 0.7001
- Avg F1 Word Shift: 0.6917
- Precision Median Exact: 0.9545
- Recall Median Exact: 0.9621
- F1 Median Exact: 0.9613
- Precision Max Exact: 1.0
- Recall Max Exact: 1.0
- F1 Max Exact: 1.0
- Precision Min Exact: 0.0
- Recall Min Exact: 0.0
- F1 Min Exact: 0.0
- Precision Min Letter Shift: 0.0
- Recall Min Letter Shift: 0.0
- F1 Min Letter Shift: 0.0
- Precision Min Word Level: 0.0
- Recall Min Word Level: 0.0
- F1 Min Word Level: 0.0
- Precision Min Word Shift: 0.0
- Recall Min Word Shift: 0.0
- F1 Min Word Shift: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer      | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|
| 0.3659        | 0.3101 | 1000  | 0.4443          | 55.3801  | 0.3563              | 0.3691           | 0.3620       | 0.3797                     | 0.3929                  | 0.3855              | 0.3883                   | 0.4004                | 0.3937            | 0.5803                   | 0.6096                | 0.5933            | 0.4104                 | 0.4387              | 0.4264          | 0.8                 | 0.8421           | 0.8205       | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.05                     | 0.0769                | 0.0606            |
| 0.1704        | 0.6202 | 2000  | 0.1796          | 108.5965 | 0.1652              | 0.1653           | 0.1651       | 0.1802                     | 0.1801                  | 0.1798              | 0.1877                   | 0.1852                | 0.1857            | 0.3054                   | 0.3010                | 0.3022            | 0.0                    | 0.0                 | 0.0             | 1.0                 | 0.9545           | 0.9767       | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0                      | 0.0                   | 0.0               |
| 0.1597        | 0.9302 | 3000  | 0.1151          | 28.7719  | 0.5223              | 0.5324           | 0.5270       | 0.5340                     | 0.5441                  | 0.5387              | 0.5437                   | 0.5504                | 0.5466            | 0.6927                   | 0.7055                | 0.6983            | 0.6929                 | 0.7042              | 0.6956          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0                      | 0.0                   | 0.0               |
| 0.0831        | 1.2403 | 4000  | 0.0854          | 32.3977  | 0.4387              | 0.4427           | 0.4405       | 0.4455                     | 0.4503                  | 0.4477              | 0.4502                   | 0.4553                | 0.4524            | 0.6281                   | 0.6409                | 0.6335            | 0.1303                 | 0.1366              | 0.1327          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0                      | 0.0                   | 0.0               |
| 0.0738        | 1.5504 | 5000  | 0.0646          | 22.3977  | 0.5615              | 0.5614           | 0.5613       | 0.5675                     | 0.5674                  | 0.5673              | 0.5725                   | 0.5739                | 0.5730            | 0.7393                   | 0.7458                | 0.7419            | 0.7907                 | 0.7980              | 0.7952          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0                      | 0.0                   | 0.0               |
| 0.0913        | 1.8605 | 6000  | 0.0462          | 26.0234  | 0.5871              | 0.5894           | 0.5881       | 0.5930                     | 0.5955                  | 0.5941              | 0.5961                   | 0.5991                | 0.5975            | 0.7016                   | 0.7077                | 0.7033            | 0.8775                 | 0.8819              | 0.8776          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0                      | 0.0                   | 0.0               |
| 0.0279        | 2.1705 | 7000  | 0.0330          | 37.3684  | 0.4606              | 0.4657           | 0.4630       | 0.4649                     | 0.4704                  | 0.4675              | 0.4698                   | 0.4757                | 0.4726            | 0.6104                   | 0.6275                | 0.6165            | 0.0889                 | 0.0883              | 0.0885          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0                      | 0.0                   | 0.0               |
| 0.0581        | 2.4806 | 8000  | 0.0228          | 21.4620  | 0.6468              | 0.6467           | 0.6467       | 0.6506                     | 0.6505                  | 0.6504              | 0.6560                   | 0.6569                | 0.6563            | 0.7490                   | 0.7511                | 0.7496            | 0.9468                 | 0.9524              | 0.9468          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0                      | 0.0                   | 0.0               |
| 0.0321        | 2.7907 | 9000  | 0.0170          | 25.7895  | 0.6249              | 0.6274           | 0.6260       | 0.6283                     | 0.6311                  | 0.6295              | 0.6324                   | 0.6348                | 0.6335            | 0.7323                   | 0.7476                | 0.7373            | 0.9456                 | 0.9506              | 0.9498          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0                      | 0.0                   | 0.0               |
| 0.0479        | 3.1008 | 10000 | 0.0127          | 31.4035  | 0.5775              | 0.5799           | 0.5786       | 0.5795                     | 0.5829                  | 0.5809              | 0.5836                   | 0.5883                | 0.5854            | 0.6875                   | 0.7001                | 0.6917            | 0.9545                 | 0.9621              | 0.9613          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0                      | 0.0                   | 0.0               |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu126
- Datasets 2.12.0
- Tokenizers 0.20.1