File size: 19,440 Bytes
d5db947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d175231
d5db947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
from pathlib import Path
from typing import Optional, Tuple, Union, List
import openvino as ov
import numpy as np
import torch
from transformers import AutoConfig
from transformers.generation import GenerationConfig, GenerationMixin
from transformers.modeling_outputs import CausalLMOutputWithPast


core = ov.Core()


LANGUAGE_MODEL_NAME = "openvino_language_model.xml"
VISION_TOWER_HIGH_NAME = "openvino_vision_tower_high_model.xml"
TEXT_EMBEDDING_NAME = "openvino_text_embeddings_model.xml"
PROJECTOR_VARY_NAME = "openvino_projector_vary_model.xml"
LM_HAED_NAME = "openvino_lm_head_model.xml"


class OvModelForCausalLMWithEmb(GenerationMixin):
    def __init__(self, model_dir, device="CPU", config=None, ov_config=None, compile=True) -> None:
        self._supports_cache_class = False
        self.config = AutoConfig.from_pretrained(model_dir) if config is None else config
        self.config.is_decoder = True
        self.config.is_encoder_decoder = False
        self.generation_config = GenerationConfig.from_model_config(self.config)
        model_dir = Path(model_dir)
        self.model = core.read_model(model_dir / LANGUAGE_MODEL_NAME)
        self.token_emb = core.read_model(model_dir / TEXT_EMBEDDING_NAME)
        self.request = None
        self.token_emb_request = None
        self._device = device.upper()
        self.device = torch.device("cpu")
        self.ov_config = ov_config
        self.next_beam_idx = None
        self._past_length = None
        self.input_names = [input_t.get_any_name() for input_t in self.model.inputs]
        self.main_input_name = "input_ids"
        if compile:
            self.compile()

    def compile(self):
        if self.request is None:
            self.request = core.compile_model(self.model, self._device, self.ov_config).create_infer_request()
        self._compile_token_emb()

    def _compile_token_emb(self):
        if self.token_emb_request is None:
            self.token_emb_request = core.compile_model(self.token_emb, self._device, self.ov_config)

    def to(self, device: str):
        if isinstance(device, str):
            self._device = device.upper()
            self.clear_requests()

        return self

    def clear_requests(self):
        del self.request
        del self.token_emb_request
        self.request = None
        self.token_emb_request = None

    def embed_tokens(self, input_ids: torch.LongTensor):
        self._compile_token_emb()
        res = self.token_emb_request(input_ids, share_inputs=True)
        return res[0]

    def prepare_inputs(
        self,
        input_ids: torch.LongTensor,
        attention_mask: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        **kwargs,
    ):
        batch_size = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0]

        inputs = {}
        # past_key_values are not used explicitly, instead they are handled inside the model
        if past_key_values is None:
            # This is the first iteration in a sequence, reset all states
            if self.request is not None:
                self.request.reset_state()
                # Set initial value for the next beam_idx input that will be used at the current iteration
                # and will be optionally updated by _reorder_cache at the next iterations if beam_search is used
                self.next_beam_idx = np.arange(batch_size, dtype=int)
                self._past_length = 0
        past_len = self._get_past_length(past_key_values)

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids if past_key_values is None else input_ids[:, -1:])

            if hasattr(self.config, "scale_emb"):
                inputs_embeds = inputs_embeds * self.config.scale_emb
        inputs["inputs_embeds"] = inputs_embeds

        # Add the attention_mask inputs when needed
        if "attention_mask" in self.input_names or "position_ids" in self.input_names:
            if attention_mask is not None:
                attention_mask = np.array(attention_mask)
            else:
                attention_mask = np.ones((inputs_embeds.shape[0], inputs_embeds.shape[1] + past_len), dtype=int)

        if "attention_mask" in self.input_names:
            inputs["attention_mask"] = attention_mask

        if "position_ids" in self.input_names:
            if position_ids is not None:
                position_ids = np.array(position_ids)
            else:
                position_ids = np.cumsum(attention_mask, axis=1) - 1
                position_ids[attention_mask == 0] = 1
                if past_key_values:
                    position_ids = position_ids[:, -input_ids.shape[1] :]

            inputs["position_ids"] = position_ids

        if "beam_idx" in self.input_names:
            inputs["beam_idx"] = self.next_beam_idx if self.next_beam_idx is not None else np.arange(batch_size, dtype=int)

        return inputs

    def forward(
        self,
        input_ids: torch.LongTensor,
        attention_mask: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.LongTensor] = None,
        **kwargs,
    ):
        self.compile()

        inputs = self.prepare_inputs(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            **kwargs,
        )

        # Run inference
        self.request.start_async(inputs, share_inputs=True)
        self.request.wait()
        logits = self.request.get_tensor("logits").data
        logits = torch.from_numpy(logits).to(self.device)
        past_key_values = ((),)
        self._past_length += inputs["inputs_embeds"].shape[1]

        return CausalLMOutputWithPast(logits=logits, past_key_values=past_key_values)

    # Adapted from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        attention_mask = kwargs.get("attention_mask", None)
        use_cache = kwargs.get("use_cache", None)

        if past_key_values is not None:
            past_len = self._get_past_length(past_key_values)
            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if attention_mask is not None and input_ids is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_len) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif input_ids is not None and past_len < input_ids.shape[1]:
                input_ids = input_ids[:, past_len:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens
        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None and "position_ids" in self.input_names:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values and input_ids is not None:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        model_inputs = {
            "input_ids": input_ids,
            "past_key_values": past_key_values,
            "use_cache": use_cache,
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "inputs_embeds": inputs_embeds if past_key_values is None else None,
        }

        return model_inputs

    def _get_past_length(self, past_key_values=None):
        if past_key_values is None:
            return 0
        return self._past_length

    # Adapted from transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel._reorder_cache
    def _reorder_cache(self, past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called.
        This is required to match `past_key_values` with the correct beam_idx at every generation step.
        """
        self.next_beam_idx = np.array(beam_idx)  # save beam_idx to be used as an input in the next iteration
        return past_key_values

    def can_generate(self):
        """Returns True to validate the check that the model using `GenerationMixin.generate()` can indeed generate."""

        return True

    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)


class OVGotOcrModel(GenerationMixin):
    def __init__(self, model_dir, device, ov_config=None, compression_configuration=None):
        model_dir = Path(model_dir)
        self.config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
        self.generation_config = GenerationConfig.from_model_config(self.config)
        self.vision_tower_high = core.compile_model(model_dir / VISION_TOWER_HIGH_NAME, device, ov_config)
        self.mm_projector_vary = core.compile_model(model_dir / PROJECTOR_VARY_NAME, device, ov_config)
        self.embed_tokens = core.compile_model(model_dir / TEXT_EMBEDDING_NAME, device)
        self.lm_head = core.compile_model(model_dir / LM_HAED_NAME, device)
        self.language_model = OvModelForCausalLMWithEmb(model_dir, device, self.config, ov_config)
        self.main_input_name = "input_ids"
        self.device = torch.device("cpu")
        self._supports_cache_class = False
        self.next_beam_idx = None
        self._past_length = None
        self.first = True
        self.im_start_token = self.config.im_start_token

    def can_generate(self):
        """Returns True to validate the check that the model using `GenerationMixin.generate()` can indeed generate."""
        return True

    def __call__(self, *args, **kwargs) -> CausalLMOutputWithPast:
        return self.forward(
            *args,
            **kwargs,
        )

    def _reorder_cache(self, *args, **kwargs) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called.
        This is required to match `past_key_values` with the correct beam_idx at every generation step.
        """
        return self.language_model._reorder_cache(*args, **kwargs)


    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        # Omit tokens covered by past_key_values
        if past_key_values is not None:
            cache_length = past_length = self.language_model._get_past_length(past_key_values)
            max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as
            # input)
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "images": kwargs.get("images", None),
            }
        )
        return model_inputs

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:

        if inputs_embeds is None:
            inputs_embeds = torch.from_numpy(self.language_model.embed_tokens(input_ids))
        
        if self.vision_tower_high is not None and (input_ids.shape[1] != 1) and images is not None:
            use_im_start_end = getattr(self.config, "use_im_start_end", -1)

            vision_select_layer = getattr(self.config, "vision_select_layer", -1)
            im_patch_token = getattr(self.config, "im_patch_token", -1)
            im_start_token = getattr(self.config, "im_start_token", -1)
            im_end_token = getattr(self.config, "im_end_token", -1)
            freeze_vision_tower = getattr(self.config, "freeze_vision_tower", False)

            im_patch_token = 151859

            im_start_token = 151857

            im_end_token = 151858
            
            image_features = []
            
            for image in images:
                P, C, H, W = image.shape
                if P == 1:
                    with torch.set_grad_enabled(False):
                        cnn_feature = self.vision_tower_high(image)[0]
                        cnn_feature = torch.from_numpy(cnn_feature).flatten(2).permute(0, 2, 1).numpy() # 256*1024
                    image_feature = self.mm_projector_vary(cnn_feature)[0]
                    image_features.append(torch.from_numpy(image_feature))

                else:
                    image_patches = torch.unbind(image)
                    image_patches_features = []
                    for image_patch in image_patches:
                        image_p = torch.stack([image_patch])
                        
                        with torch.set_grad_enabled(False):
                            cnn_feature_p = self.vision_tower_high(image_p)[0]
                            cnn_feature_p = torch.from_numpy(cnn_feature_p).flatten(2).permute(0, 2, 1).numpy()
                        image_feature_p = self.mm_projector_vary(cnn_feature_p)[0]
                        image_patches_features.append(torch.from_numpy(image_feature_p))
                    image_feature = torch.cat(image_patches_features, dim=1)
                    image_features.append(image_feature)


            dummy_image_features_2 = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
            dummy_image_features = dummy_image_features_2
            use_im_start_end = True
            new_input_embeds = []
            for cur_input_ids, cur_input_embeds, cur_image_features in zip(input_ids, inputs_embeds, image_features):
                if (cur_input_ids == im_patch_token).sum() == 0:
                    cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
                    new_input_embeds.append(cur_input_embeds)
                    continue

                if use_im_start_end:
                    if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum():
                        raise ValueError("The number of image start tokens and image end tokens should be the same.")
                    
                    image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
                    for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features):
                        per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device)
                        num_patches = per_cur_image_features.shape[0]

                        if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
                            raise ValueError("The image end token should follow the image start token.")
                        
                        cur_input_embeds = torch.cat(
                            (
                                cur_input_embeds[:image_start_token_pos+1], 
                                per_cur_image_features, 
                                cur_input_embeds[image_start_token_pos + num_patches + 1:]
                            ), 
                            dim=0
                        )


                    new_input_embeds.append(cur_input_embeds)
                else:
                    raise NotImplementedError

            inputs_embeds = torch.stack(new_input_embeds, dim=0)

        outputs = self.language_model(
            None, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=True
        )
        logits = outputs[0]
        logits = self.lm_head(logits[0])[0]
        logits = torch.from_numpy(logits).to(self.device)
        logits = logits.unsqueeze(0)

        return CausalLMOutputWithPast(
            loss=None,
            logits=logits,
            past_key_values=outputs.past_key_values,
        )