Update README.md
Browse files
README.md
CHANGED
@@ -57,8 +57,8 @@ def load_dataset_sundanese():
|
|
57 |
|
58 |
dfs = []
|
59 |
|
60 |
-
dfs.append(pd.read_csv(filenames[0], sep='
|
61 |
-
dfs.append(pd.read_csv(filenames[1], sep='
|
62 |
|
63 |
for i, dir in enumerate(data_dirs):
|
64 |
dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1)
|
@@ -78,17 +78,17 @@ model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese")
|
|
78 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
79 |
|
80 |
# Preprocessing the datasets.
|
81 |
-
# We need to read the
|
82 |
def speech_file_to_array_fn(batch):
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
88 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
89 |
|
90 |
with torch.no_grad():
|
91 |
-
|
92 |
|
93 |
predicted_ids = torch.argmax(logits, dim=-1)
|
94 |
|
@@ -108,38 +108,68 @@ from datasets import load_dataset, load_metric
|
|
108 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
109 |
import re
|
110 |
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
wer = load_metric("wer")
|
113 |
|
114 |
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese")
|
115 |
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese")
|
116 |
model.to("cuda")
|
117 |
|
118 |
-
chars_to_ignore_regex = '[
|
119 |
|
120 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
121 |
|
122 |
# Preprocessing the datasets.
|
123 |
# We need to read the aduio files as arrays
|
124 |
def speech_file_to_array_fn(batch):
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
|
130 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
131 |
|
132 |
# Preprocessing the datasets.
|
133 |
-
# We need to read the
|
134 |
def evaluate(batch):
|
135 |
-
|
136 |
|
137 |
-
|
138 |
-
|
139 |
|
140 |
pred_ids = torch.argmax(logits, dim=-1)
|
141 |
-
|
142 |
-
|
143 |
|
144 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
145 |
|
|
|
57 |
|
58 |
dfs = []
|
59 |
|
60 |
+
dfs.append(pd.read_csv(filenames[0], sep='\\t\\t', names=["path", "sentence"]))
|
61 |
+
dfs.append(pd.read_csv(filenames[1], sep='\\t\\t', names=["path", "sentence"]))
|
62 |
|
63 |
for i, dir in enumerate(data_dirs):
|
64 |
dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1)
|
|
|
78 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
79 |
|
80 |
# Preprocessing the datasets.
|
81 |
+
# We need to read the audio files as arrays
|
82 |
def speech_file_to_array_fn(batch):
|
83 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
84 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
85 |
+
return batch
|
86 |
|
87 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
88 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
89 |
|
90 |
with torch.no_grad():
|
91 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
92 |
|
93 |
predicted_ids = torch.argmax(logits, dim=-1)
|
94 |
|
|
|
108 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
109 |
import re
|
110 |
|
111 |
+
def load_dataset_sundanese():
|
112 |
+
root_dir = Path("/dataset/ASR/sundanese")
|
113 |
+
url_sundanese_female = "https://www.openslr.org/resources/44/su_id_female.zip"
|
114 |
+
url_sundanese_male = "https://www.openslr.org/resources/44/su_id_male.zip"
|
115 |
+
data_dirs = [ root_dir/"su_id_female/wavs", root_dir/"su_id_male/wavs" ]
|
116 |
+
filenames = [ root_dir/"su_id_female/line_index.tsv", root_dir/"su_id_male/line_index.tsv" ]
|
117 |
+
|
118 |
+
if not (root_dir/"su_id_female").exists():
|
119 |
+
!wget -P {root_dir} {url_sundanese_female}
|
120 |
+
!unzip {root_dir}/su_id_female.zip -d {root_dir}
|
121 |
+
if not (root_dir/"su_id_male").exists():
|
122 |
+
!wget -P {root_dir} {url_sundanese_male}
|
123 |
+
!unzip {root_dir}/su_id_male.zip -d {root_dir}
|
124 |
+
|
125 |
+
dfs = []
|
126 |
+
|
127 |
+
dfs.append(pd.read_csv(filenames[0], sep='\\t\\t', names=["path", "sentence"]))
|
128 |
+
dfs.append(pd.read_csv(filenames[1], sep='\\t\\t', names=["path", "sentence"]))
|
129 |
+
|
130 |
+
for i, dir in enumerate(data_dirs):
|
131 |
+
dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1)
|
132 |
+
df = pd.concat(dfs)
|
133 |
+
# df = df.sample(frac=1, random_state=1).reset_index(drop=True)
|
134 |
+
dataset = Dataset.from_pandas(df)
|
135 |
+
dataset = dataset.remove_columns('__index_level_0__')
|
136 |
+
|
137 |
+
return dataset.train_test_split(test_size=0.1, seed=1)
|
138 |
+
|
139 |
+
dataset = load_dataset_sundanese()
|
140 |
+
test_dataset = dataset['test']
|
141 |
+
|
142 |
wer = load_metric("wer")
|
143 |
|
144 |
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese")
|
145 |
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese")
|
146 |
model.to("cuda")
|
147 |
|
148 |
+
chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“\\\\\\\\%\\\\\\\\‘\\\\\\\\'\\\\\\\\”]'
|
149 |
|
150 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
151 |
|
152 |
# Preprocessing the datasets.
|
153 |
# We need to read the aduio files as arrays
|
154 |
def speech_file_to_array_fn(batch):
|
155 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
156 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
157 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
158 |
+
return batch
|
159 |
|
160 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
161 |
|
162 |
# Preprocessing the datasets.
|
163 |
+
# We need to read the audio files as arrays
|
164 |
def evaluate(batch):
|
165 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
166 |
|
167 |
+
with torch.no_grad():
|
168 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
169 |
|
170 |
pred_ids = torch.argmax(logits, dim=-1)
|
171 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
172 |
+
return batch
|
173 |
|
174 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
175 |
|