--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-cased-finetuned-AddedTokens-HMGCR-IC50s-V1 results: [] --- # bert-base-cased-finetuned-AddedTokens-HMGCR-IC50s-V1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on 905 HMGCR IC50 values from bindingDB.org. Molecules with counter ions were included twice, once with and once without counter-ions. It achieves the following results on the evaluation set: - Loss: 0.7278 - Accuracy: 0.7929 - F1: 0.7931 ## Model description More information needed ## Intended uses & limitations Can classify HMGCR IC50 values as < 50 nM, < 500 nM, and > 500 nM. See Confusion matrix below: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/679e079d375d81eb7ca4850e/VlV7AHGYSNKi2n5l62oGl.png) ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9314 | 1.0 | 25 | 0.8466 | 0.7071 | 0.6371 | | 0.7535 | 2.0 | 50 | 0.7025 | 0.7357 | 0.6634 | | 0.6292 | 3.0 | 75 | 0.6237 | 0.7714 | 0.6956 | | 0.5464 | 4.0 | 100 | 0.6162 | 0.7571 | 0.7137 | | 0.5068 | 5.0 | 125 | 0.5730 | 0.7857 | 0.7185 | | 0.4516 | 6.0 | 150 | 0.5872 | 0.7643 | 0.7312 | | 0.3971 | 7.0 | 175 | 0.6004 | 0.7643 | 0.7578 | | 0.3768 | 8.0 | 200 | 0.6253 | 0.7714 | 0.7739 | | 0.3353 | 9.0 | 225 | 0.6280 | 0.7786 | 0.7522 | | 0.3439 | 10.0 | 250 | 0.6299 | 0.7714 | 0.7613 | | 0.3087 | 11.0 | 275 | 0.6569 | 0.7786 | 0.7719 | | 0.2979 | 12.0 | 300 | 0.6308 | 0.7714 | 0.7753 | | 0.2561 | 13.0 | 325 | 0.6596 | 0.7786 | 0.7786 | | 0.2703 | 14.0 | 350 | 0.6646 | 0.7786 | 0.7808 | | 0.2504 | 15.0 | 375 | 0.7125 | 0.7857 | 0.7913 | | 0.2397 | 16.0 | 400 | 0.6893 | 0.7786 | 0.7770 | | 0.2152 | 17.0 | 425 | 0.7278 | 0.7929 | 0.7931 | | 0.2066 | 18.0 | 450 | 0.6947 | 0.7857 | 0.7895 | | 0.2133 | 19.0 | 475 | 0.7202 | 0.7714 | 0.7756 | | 0.202 | 20.0 | 500 | 0.7167 | 0.7857 | 0.7887 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.0 - Tokenizers 0.21.0