cacbon-dioxit commited on
Commit
030a016
·
verified ·
1 Parent(s): ec4680c

End of training

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert-base-cased
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: knet-gpt-detection-project
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # knet-gpt-detection-project
21
+
22
+ This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.0070
25
+ - Accuracy: 0.9981
26
+ - F1: 0.9974
27
+ - Precision: 0.9966
28
+ - Recall: 0.9983
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 5e-05
48
+ - train_batch_size: 64
49
+ - eval_batch_size: 64
50
+ - seed: 42
51
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 2
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
59
+ | 0.0176 | 1.0 | 1371 | 0.0094 | 0.9975 | 0.9967 | 0.9969 | 0.9964 |
60
+ | 0.0039 | 2.0 | 2742 | 0.0070 | 0.9981 | 0.9974 | 0.9966 | 0.9983 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.47.1
66
+ - Pytorch 2.5.1+cu121
67
+ - Datasets 3.2.0
68
+ - Tokenizers 0.21.0